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Abstract. We introduce a new definition of localization for frames which

gets rid of the dependence on the indexing of the frames. Two main results of
Gröchenig are extended to this definition, namely that the dual of a localized

frame is also localized, and a frame localized with respect to another frame

is a Banach frame for the associated family of Banach spaces. These results
parallel the results of a more recent paper by Fornasier and Gröchenig.

1. Introduction

The concept of localization of frames was recently introduced independently by
Gröchenig [?] and the group consisting of Balan, Casazza, Heil, and Landau (BCHL)
[?]. To understand localization of frames, let H = L2(R) and consider two frames
F = (fx)x∈X and E = (ey)y∈Y of H whose indexing sets X and Y are countable
subsets of R. We can think of each fx ∈ F as being “concentrated” near x, and
similarly for each ey ∈ E . Roughly, F is localized with respect to E if each fx can
be well-approximated by a finite linear combination of ey’s. In other words, since
fx can be written as

fx =
∑
y∈Y
〈fx, ey〉ẽy

we say that F is localized with respect to E if the magnitudes of the coefficients
|〈fx, ey〉| exhibit a certain decay as the distance between x and y increases. Equiva-
lently, F is localized with respect to E if the cross-Gramian matrix [〈fx, ey〉]x∈X,y∈Y
has a decay off the diagonal.

Localization has already proven to be a powerful new quality of frames [?], [?],
[?], [?], [?], [?], [?], [?], [?]. Gröchenig proved that a frame localized with respect
to a Riesz basis is automatically a Banach frame for an often important family
of Banach spaces associated to the Riesz basis. This result generalized results
from sampling theory, time-frequency analysis, and wavelet analysis [?], [?], [?], [?].
Later, Fornasier and Gröchenig [?] proved a similar result for frames localized with
respect to other frames, where the localization is defined by the Gramian matrices
belonging to a particular spectral algebra. The role of Banach matrix algebras in
this theory of localized frames was further developed by Gröchenig and Leinert
[?]. Most recently, Fornasier and Rauhut [?] introduced the notion of continuous
localized frames indexed by a locally compact space endowed with a Radon measure
and showed that these frames can be sampled to create discrete localized frames.
Independent of these developments, BCHL introduced the notion of localized frames
to prove powerful results concerning the density and excess of frames, extending
their results in [?] and [?]. They also provided an illuminating new perspective on
previously known results concerning Gabor frames.
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In this paper, we introduce a definition which gets rid of the dependence of local-
ization on the indexing of the frames. The property of localization was dependent
on indexing for all previous definitions. We then show that the main results of
Gröchenig still hold. This definition also extends the results of BCHL; these results
can be found in [?]. It must be remarked that this definition was developed prior
to knowledge of the following papers, [?], [?], [?]. The Fornasier and Rauhut defi-
nition of localization [?] may be thought of as the most general definition, as this
definition is for continuous frames indexed on a locally compact space with Radon
measure. However, the localization condition depends on the prescribed choice of
Radon measure, which corresponds to a particular choice of arrangement of the
index set. Additionally, in the papers just mentioned, the localization condition is
generalized so that the cross-Gramian matrices of localized frames belong to a par-
ticular Banach algebra. In this paper, we only treat cross-Gramian matrices with
off-diagonal `p decay. Note, matrices with off-diagonal `1 decay can be thought
of as belonging to the Sjöstrand algebra. We expect that this definition can be
extended using more general Banach algebras.

Our paper will be organized as follows. In Section 2, we introduce the symmetric
definition of localization. In Section 3, we investigate the equivalence structure of
`1-self-localized frames, and finally, in Section 4, we extend the two main results of
Gröchenig, namely localization of the dual frame, and the construction of Banach
frames.

2. Symmetric Localization

Before introducing the new definition, we fix basic notation. We recommend [?],
[?], [?], [?], and [?] for additional background.

For a countable set X, let F = (fx)x∈X be a frame for a separable Hilbert
space H with frame bounds A,B. The analysis operator will be denoted C :=
CF : H → `2(X), where C(f) = (〈f, fx〉)x∈X . The synthesis operator will
be denoted D := DF : `2(X) → H, where D((cx)x∈X) =

∑
x∈X cxfx. D is

the adjoint of C, D = C∗. The frame operator denoted S = DC : H → H,
Sf =

∑
x∈X 〈f, fx〉fx is a positive, invertible operator such that A · I ≤ S ≤ B · I.

The canonical dual frame of F is denoted F̃ = (S−1fx)x∈X = (f̃x)x∈X and is
such that f =

∑
x∈X 〈f, f̃x〉fx =

∑
x∈X 〈f, f̃x〉fx for all f ∈ H.

In the following, let G be a group of the form
d∏
i=1

aiZ ×
e∏
j=1

Zbj . For every g =

(a1n1, a2n2, ..., adnd,m1,m2, ...,me) ∈ G, let

|g| = sup{|a1n1|, |a2n2|, ..., |adnd|, δ(m1), δ(m2), ..., δ(me)}

where δ(m) =

{
0 if m=0;
1 otherwise.

Define a metric on G to be d(g, h) = |g − h| for g, h ∈ G.
Let Sn(j) be defined to be the ball of radius n centered at j in G. We define

|Sn(j)| := #[Sn(j)], the cardinality of Sn(j).

Definition 2.1 (Symmetric localization). Let sequences F = (fx)x∈X and E =
(ey)y∈Y in a Hilbert space H, X and Y arbitrary index sets.
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(1) (F , E) is symmetrically `p-localized if there exist maps aX : X → G,
aY : Y → G such that max{supj∈G |a−1

X (j)|, supj∈G |a−1
Y (j)|} ≤ K < ∞,

and r ∈ `p(G) such that for all x ∈ X, y ∈ Y ,

|〈fx, ey〉| ≤ raX(x)−aY (y).

(2) F is symmetrically `p-self-localized if it is symmetrically `p-localized
with respect to itself.

(3) (F , E) has uniform `p column decay if for every ε > 0 there is a Nε > 0
such that for all y ∈ Y , ∑

x∈X\a−1
X (SNε (aY (y)))

|〈fx, ey〉|p < ε.

(4) (F , E) has uniform `p row decay if for every ε > 0 there is a Nε > 0
such that for all x ∈ X, ∑

y∈Y \a−1
Y (SNε (aX(x)))

|〈fx, ey〉|p < ε.

Remark 2.2. The terms column and row decay come from considering the cross-
Gramian matrix (〈fx, ey〉)x∈X,y∈Y .

Remark 2.3. If we let Y = G and aY = id, then we have the definition of BCHL
provided supj∈G |a−1

X (j)| ≤ K < ∞. Bounded point inverses is not only desired
in applications but also used in nearly all of the theorems of BCHL so it is not a
restrictive condition.

Though we do not have a straight generalization of Gröchenig’s definition, every
frame localized with respect to a Riesz basis in Gröchenig’s sense is localized in this
symmetric sense as will be made clear below.

Definition 2.4. A set X ⊆ Rd is separated if there exists a positive constant c
such that for every x, y ∈ X such that x 6= y, 0 < c ≤ |x− y|.

Definition 2.5 (Gröchenig [?]). The frame F = (fx)x∈X in L2(Rd) is polyno-

mially localized with respect to the Riesz basis E = (ey)y∈Y in L2(Rd), with decay
s > 0 (or s-localized), where X is a finite union of separated sets of Rd and Y is
a separated set of Rd, if for all x ∈ X, y ∈ Y , and C > 0,

|〈fx, ey〉| ≤ C(1 + |x− y|)−s and |〈fx, ẽy〉| ≤ C(1 + |x− y|)−s.

Likewise, F is called exponentially localized with exponent α > 0 if for
some α > 0 and C > 0,

|〈fx, ey〉| ≤ Ce−α|x−y| and |〈fx, ẽy〉| ≤ Ce−α|x−y|.

To prove that every polynomially localized frame is symmetrically localized, let
F = (fx)x∈X is s-localized with respect to a Riesz basis E = (ey)y∈Y as above. Let
G := 1

2dZd. For x = (xi)di=1 ∈ Rd, let ni ≤ xi < ni + 1
2d with ni ∈ 1

2dZ, i = 1, ...d.
We define aX : X → G in the following way:

aX(x) = (w1, ..., wd) where wi =

{
ni if xi < ni + 1

4d

ni + 1
2d if xi ≥ ni + 1

4d .

We define aY : Y → G similarly.
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If we define r : G→ C to be r = (rg)g∈G = (C( 1
2 + |g|)−s)g∈G, then r ∈ `p where

p > 1
s , and F is symmetrically `p-localized with respect to E with decay given by

r. A similar argument holds for exponentially localized frames. �
The most compelling reason for the introduction of this new definition for local-

ized frames is the need for a definition that not only compare any two frames, but
two frames regardless of the indexing. Recall that the frame series converges un-
conditionally, or equivalently, the convergence of the partial sums is independent of
the indexing of the frames. All previous definitions depend on the indexing. Given
a frame F localized with respect to a Riesz basis E in the sense of Gröchenig [?], we
can easily permute the index set of F , E , or both so that F is no longer localized
with respect to E . The same is true for Fornasier and Gröchenig’s definition [?],
Fornasier and Rauhut’s definition [?], and Gröchenig and Leinert’s definition [?].
The definition found in [?] is also dependent on the indexing of the frames because
of the dependence on the map aX : X → G. The symmetrically localized definition
is independent of the indexing. For this definition, we need only the existence of
some maps aX : X → G and aY : Y → G with finite point inverses, so given a per-
mutation p of the index set X, we can define a new map a′X = aX ◦p−1 : p(X)→ G.

Example 2.6. Let F =
(

sin[π(x+k)]
π(x+k)

)
k∈ 1

2Z
and E =

(
sin[π(x+n)]
π(x+n)

)
n∈Z

be frames for

L2(R). Let aZ : Z→ Z be the identity function, and a 1
2Z : 1

2Z→ Z be defined

a 1
2Z(k) =


k if k ∈ Z;
k − 1/2 if k ∈ Z+;
k + 1/2 if k ∈ Z−.

F is symmetrically `p localized with respect to E for any p > 1, where the decay is

given by rg =

{
1 if g = 0;

1
|g|π if g 6= 0.

Example 2.7. Let G(γ,Γ) = {TxMwγ : (x,w) ∈ Γ} and G(γ,Λ) = {TyMzγ :
(z, y) ∈ Λ} be Gabor frames in L2(R), where Tx is the translation operator defined
Txf(y) = f(y−x) and Mz is the modulation operator defined Mzf(y) = e2πizyf(y).
Suppose γ = e−πx

2
, the normalized Gaussian, and Γ,Λ ⊂ R2 with finite multiplic-

ities. Let aΓ : Γ→ Z× Z and aΛ : Λ→ Z× Z be functions sending a point to the
nearest lattice point. More concretely, suppose for m,n ∈ Z and 0 < a, b < 1,

aΓ(x,w) = aΓ(m+ a, n+ b) =


(m,n) if a < 1/2, b < 1/2;
(m,n+ 1) if a < 1/2, b ≥ 1/2;
(m+ 1, n) if a ≥ 1/2, b < 1/2;
(m+ 1, n+ 1) if a ≥ 1/2, b ≥ 1/2.

Then G(γ,Γ) = {TxMwγ : (x,w) ∈ Γ} is symmetrically `1-localized with respect
to G(γ,Λ) = {TyMzγ : (z, y) ∈ Λ}, where

r = (r(m,n))Z×Z = (2−1/2e−π((m−1)2+(n−1)2)/2)Z×Z.

3. Equivalence Class Structure

The symmetries in this definition allow for a natural equivalence class structure,
as was shown for Fornasier’s intrinsically localized frames in [?].
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Definition 3.1. Let S1 := {F = (fx)x∈X | F is a symmetrically `1-self-localized
frame of H}. For F , E ∈ S1, we define the relation F ∼ E if F is symmetrically
`1-localized with respect to E.

We have the following theorem.

Theorem 3.2. [?] Let F ∈ S1. Then for F̃ , F̃ ∈ S1 and F ∼ F̃ .

This theorem applies directly as our definition coincides with that of BCHL in
the case of self-localization.

Before verifying that we have an equivalence relation, let us first prove the fol-
lowing proposition.

Proposition 3.3. Let F = (fx)x∈X and E = (ey)y∈Y be frame sequences for Hilbert
space H, X and Y arbitrary index sets. Let aX : X → G, aY : Y → G be associated
maps. Suppose the following conditions are satisfied:

(1) F is symmetrically `1-localized with respect to E, i.e., there exists r ∈ `1(G)
such that |〈fx, ey〉| ≤ raX(x)−aY (y).

(2) F is symmetrically `1-localized with respect to Ẽ, i.e. there exists s ∈ `1(G)
such that |〈fx, ẽy〉| ≤ saX(x)−aY (y).

Then F ∈ S1 and E ∈ S1.

Proof. We define convolution for `p(G) in the following way:

(cj)j∈G = (bj)j∈G ∗ (dj)j∈G =

(∑
k∈G

bkdj−k

)
j∈G

.

|〈fx, fz〉| =

∣∣∣∣∣∣
〈∑
y∈Y
〈fx, ey〉ẽy, fz

〉∣∣∣∣∣∣
≤

∑
y∈Y
|〈fx, ey〉| |〈ẽy, fz〉|

≤
∑
y∈Y

raX(x)−aY (y) saY (y)−aX(z)

=
∑
j∈G

∑
y∈a−1

Y (j)

raX(x)−aY (y) saY (y)−aX(z)

≤
∑
j∈G

KraX(x)−j sj−aX(z)

= K(r ∗ s)aX(x)−aX(z).

As r, s ∈ `1(G), we have that r ∗ s ∈ `1(G). Hence F ∈ S1. By Theorem 3.2,
F̃ ∈ S1, so there is a q ∈ `1(G) such that |〈f̃x, f̃z〉| ≤ qaX(x)−aX(z). Then by a
similar calculation as above,

|〈ey, f̃x〉| ≤
∑
z∈X
|〈ey, fz〉| |〈f̃z, f̃x〉| ≤ K(r ∗ q)aY (y)−aX(x).

Finally,

|〈ey, ez〉| ≤
∑
x∈X
|〈ey, f̃x〉| |〈fx, ez〉| ≤ K(r ∗ q ∗ r)aY (y)−aY (z).



6 FUMIKO FUTAMURA

As r, q ∈ `1(G), r ∗ q ∗ r ∈ `1(G). Hence E ∈ S1. �

Proposition 3.4. Let F = (fx)x∈X and E = (ey)y∈Y be frame sequences for Hilbert
space H, X and Y arbitrary index sets. Let aX : X → G, aY : Y → G be associated
maps. Suppose the following are satisfied,

(1) E ∈ S1,
(2) F is symmetrically `1-localized with respect to E, i.e., there exists r ∈ `1(G)

such that |〈fx, ey〉| ≤ raX(x)−aY (y).

Then F is `1 localized with respect to Ẽ, and F ∈ S1.

Proof. By theorem 3.2, if E ∈ S1, then Ẽ ∈ S1. So let s ∈ `1(G) such that
|〈ẽy, ẽz〉| ≤ saY (y)−aY (z). If K = sup

j∈G
|a−1
Y (j)|, then

|〈fx, ẽy〉| ≤
∑
z∈Y
|〈fx, ez〉| |〈ẽz, ẽy〉|

≤
∑
z∈Y

raX(x)−aY (z) saY (z)−aY (y)

=
∑
j∈G

∑
z∈a−1

Y (j)

raX(x)−aY (z) saY (z)−aY (y)

≤
∑
j∈G

KraX(x)−j sj−aY (y)

= K(r ∗ s)aX(x)−aY (y).

As r, s ∈ `1(G), r ∗ s ∈ `1(G). Hence F is `1 localized with respect to Ẽ . So by
Proposition 3.3, F ∈ S1. �

Theorem 3.5. ∼ is an equivalence relation on S1.

Proof. Reflexivity: By definition, F ∼ F .
Symmetry: It is clear to see that F ∼ E ⇒ E ∼ F .
Transitivity: Let F = (fx)x∈X , E = (ey)y∈Y ,G = (gz)z∈Z ∈ S1, such that F ∼ E

and E ∼ G. Let K = sup
j∈G
|a−1
Y (j)|. By Proposition 3.4 and symmetry, we have that

Ẽ ∼ G. Let r ∈ `1(G) and s ∈ `1(G) be such that |〈fx, ey〉| ≤ raX(x)−aY (y) and
|〈ẽy, gz〉| ≤ saY (y)−aZ(z). Then we have

|〈fx, gz〉| ≤
∑
y∈Y
|〈fx, ey〉| |〈ẽy, gz〉|

≤
∑
y∈Y

raX(x)−aY (y) saY (y)−aZ(z)

=
∑
j∈G

∑
y∈a−1

Y (j)

raX(x)−aY (y) saY (y)−aZ(z)

=
∑
j∈G

KraX(x)−j sj−aZ(z)

≤ K(r ∗ s)aX(x)−aZ(z).

Notice, r, s ∈ `1(G), so r ∗ s ∈ `1(G). Hence F ∼ G. �
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From this equivalence class structure, we obtain the following.

Corollary 3.6. For all F , E ∈ S1, F ∼ E implies F ∼ Ẽ , F̃ ∼ E , F̃ ∼ Ẽ.

Example 3.7. Gabor frames for L2(Rd) are modulations and translations of a
single function, called an atom. These atoms ought to have good decay in both time
and frequency, and a class of functions with such a property is the modulation space,
M1. M1 consists of all functions f such that the short-time Fourier transform
Vgf : R2d → C defined Vgf(x, ω) = 〈f,MωTxg〉 is in L1(R2d). In [?], we have the
following theorem.

Theorem 3.8. [?] Let G(γ,Γ) = (TxMwγ : (x,w) ∈ Γ) and G(λ,G) = (TyMzλ :
(z, y) ∈ G) be Gabor frames in L2(R), where γ, λ ∈M1 and G = αZd×βZd. Then
the following statements hold:

(a) G(γ,Γ),G(λ,G) ∈ S1,
(b) G(γ,Γ) ∼ G(λ,G).

Using this theorem and corollary 3.6, we have that all Gabor frames with gener-
ators in the modulation space M1 and their canonical duals, regardless of whether
or not their indices have a lattice structure, are in the same equivalence class.

As previously mentioned, a similar relation was given in [?] and [?], which was
brought to the attention of the author after this paper was nearly completed. Their
relation was almost an equivalence relation, and was defined on the set of frames
whose Gramian matrices lie in a solid, inverse closed, involutive Banach algebra. In
contrast, the set of Gramian matrices of `1-self localized frames forms an algebra,
but not necessarily an inverse closed Banach algebra. However, a frame F is `1-
self localized if and only if a frame F ′ is localized in the sense of Fornasier and
Gröchenig, i.e., the Gramian matrix is in the Sjöstrand algebra (see Theorem A.1,
Remark A.2, and Lemma A.1 in [?]).

4. Extending the Results of Gröchenig

Gröchenig had two main results in [?], that a frame is localized with respect to a
Riesz basis if and only if its canonical dual exhibits the same localization property,
and frames localized with respect to a Riesz basis are automatically Banach frames
for the family of Banach spaces naturally associated to the Riesz basis. We shall
extend both of his results as an consequence of the equivalence relation.

4.1. Localization of the Dual. In Gröchenig’s definition, we have that a frame
F is s-localized with respect to a Riesz basis E if we have polynomial decay with
respect to both E and its canonical dual, Ẽ . Since we have that s-localization
implies symmetric `p-localization with p > 1

s , assume s > 1. Then we have that F
is symmetrically `1-localized with respect to E . By Proposition 3.3, if F = (fx)x∈X
is s-localized with respect to a Riesz basis E = (ey)y∈Y , s > 1, we have F ∈ S1 and
E ∈ S1. So by Corollary 3.6, if F = (fx)x∈X is s-localized with respect to a Riesz
basis E = (ey)y∈Y , s > 1, then as F ∼ E , we have F̃ ∼ E .

4.2. Construction of Banach Frames. One of the main goals regarding Banach
frames is their construction. In particular, we would like to show that a self-
localized frame defines a family of Banach spaces, and any other frame localized
with respect to it is also a Banach frame for these spaces. As an example, consider
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their significance in the study of Gabor frames. Here, the Banach spaces Hp
m

associated with a Gabor frame are the all important modulation spaces [?]. We
shall prove that if F = (fx)x∈X , E = (ey)y∈Y ∈ S1, and F ∼ E , then F is a Banach
frame for the natural family of Banach spaces associated to E . Note that when
dealing with weights, we need extra conditions on the indices for everything to
make sense.

Definition 4.1. Let (B, ‖ · ‖B) be a Banach space and let (Bd(X), ‖ · ‖Bd)be a
Banach space of sequences indexed by X. A (countable) subset (fx : x ∈ X) of B′,
the dual of B, is called a Banach frame for B if the following properties hold:

(a) The coefficient operator CE : B → Bd(X) defined by CEf = (fx(f))x∈X is
bounded.

(b) We have the norm equivalence ‖f‖B � ‖fx(f)‖Bd .
(c) There exist a bounded operator R : Bd(X) → B, called the reconstruction

operator, such that R((fx(f))x∈X) = f .

Definition 4.2. For 1 ≤ p < ∞, the weighted `p-space `pm(Y ) on the index set
Y ⊂ Rd is defined by the norm

‖c‖`pm =

∑
y∈Y
|cy|pm(y)p

1/p

with the usual modification for p =∞. The weight m is a non-negative function on
Rd which we may assume without loss of generality is continuous.

For the purposes of this paper, we assume that the weight is submultiplicative,
i.e., m(j + k) ≤ m(j)m(k) for all j, k ∈ Rd.

Definition 4.3. Let E = (ey)y∈Y be a frame for H such that E ∈ S1 and Ẽ be the
canonical dual frame. Let H0 ⊂ H be the subspace of finite linear combinations of
elements in E. For 0 < p <∞ and m a weight function, we define a (quasi-) norm
on H0 by

‖f‖Hp

m
= ‖(f, ẽy)y∈Y ‖`pm .

For 1 ≤ p < ∞, the associated space Hpm(E , Ẽ) is defined to be the norm com-
pletion of H0 with the norm ‖ · ‖Hp

m
. For p = ∞, H∞m (E , Ẽ) is defined to be the

completion of H0 in the σ(H,H0)-topology.

Hpm(E , Ẽ) is a Banach space for 1 ≤ p ≤ ∞ with ‖f‖Hp

m
� inf{‖c‖`pm : c ∈

`pm, f =
∑
y∈Y cyey} as proved in [?], using the following lemma.

Lemma 4.4. Let F be symmetrically `1-localized with respect to E and consider
the cross-Gramian matrix A = (〈ey, fx〉)y∈Y,x∈X . Let c be a finite sequence, then A
acts on c in the following way: (Ac)x∈X = (

∑
y∈Y 〈ey, fx〉cy)x∈X . Then A extends

to a bounded operator from `pm(Y ) to `pm(X), where m is a submultiplicative weight.
If m = 1, then X,Y can be arbitrary countable indices. If m 6= 1, then we assume
X,Y,G ⊂ Rd, m : Rd → R and the maps aX : X → G, aY : Y → G coming from
the localization are such that max{supx∈X |x − aX(x)|, |y − aY (y)|} ≤ µ for some
µ > 0.
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Proof. Let c ∈ `pm(Y ). Define d = (dj)j∈G, where dj =
∑
y∈a−1

Y (j) |cy|. Then

d ∈ `pm(G) as |a−1
Y (j)| ≤ K for all j ∈ G. Hence,

|(Ac)x| = |
∑
y∈Y
〈ey, fx〉cy|

≤
∑
y∈Y
|〈ey, fx〉| |cy|

≤
∑
j∈G

∑
y∈a−1

Y (j)

raX(x)−aY (y) |cy|

=
∑
j∈G

raX(x)−j dj

= (r ∗ d)aX(x).

Hence, by a proof found in [?], there exists some constant C such that

‖Ac‖`pm(X) ≤ ‖r ∗ d‖`pm(G) ≤ C ‖r‖`1m(G) ‖d‖`pm(G) <∞.

We now prove that ‖d‖`pm(G) ≤ MK‖c‖`pm(Y ), where M = sup|z|≤µm(z) and K =
max{supj∈G a

−1
X (j), supj∈G a

−1
Y (j)}. Notice, as m is assumed to be continuous, we

have that M is finite.
For 1 ≤ p <∞, since

(∑
y∈a−1

Y (j) |cy|
)p
≤ Kp

∑
y∈a−1

Y (j) |cy|p and m is submul-
tiplicative, we have

‖d‖p
`pm(G)

=
∑
j∈G

dpjm(j)p

≤ Kp
∑
j∈G

∑
y∈a−1

Y (j)

|cy|p m(j)p

≤ Kp
∑
j∈G

∑
y∈a−1

Y (j)

|cy|p m(y)p m(j − y)p

≤ Mp Kp
∑
j∈G

∑
y∈a−1

Y (j)

|cy|p m(y)p

= Mp Kp ‖c‖p
`pm(Y )

.

For p =∞,

‖d‖l∞m (G) = ess sup
j∈G

dj m(j)

= ess sup
j∈G

∑
y∈a−1

Y (j)

|cy|m(j)

≤ ess sup
j∈G

∑
y∈a−1

Y (j)

|cy|m(y)m(j − y)

≤
∑

y∈a−1
Y (j)

ess sup
y∈Y

|cy|m(y)M

≤ M K ‖c‖l∞m (Y ).

Hence, ‖Ac‖`pm(X) ≤M K C ‖r‖`1m(G) ‖c‖`pm(Y ). �
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As noted in [?], The elements ofHpm are technically equivalence classes of Cauchy
sequences of elements of H0. Though Hpm may happen to be {0} or dependent on
the choice of duals, if the frame is `1-self-localized, then Hpm is a Banach space
independent of the choice of a dual and all self-localized frames in a particular
equivalence class will be Banach frames for the same space.

Theorem 4.5. Suppose F = (fx)x∈X and E = (ey)y∈Y are frames for a Hilbert
space H, F , E ∈ S1. If F ∼ E, then F is a Banach frame for the family of Banach
spaces Hp(E , Ẽ).

Proof. We will need to satisfy the following conditions:

(a) The coefficient operator C : Hp → `p(X) defined Cf = (〈f, fx〉)x∈X is
bounded.

(b) There exists a bounded operator R from `p(X) to Hp, called the recon-
struction operator, such that R((〈f, fx〉)x∈X) = f .

(c) We have the norm equivalence ‖f‖Hp � ‖〈f, fx〉‖`p(X).

Let B = Hp and Bd = `p(X), where 1 ≤ p ≤ ∞. If f ∈ Hp ⊆ H, then
f =

∑
y∈Y cyey where c ∈ `p(Y ). We define the linear functionals (fx)x∈X ∈ (Hp)′

in the following way:

fx(f) = 〈f, fx〉 =
∑
y∈Y

cy〈ey, fx〉.

Let B = supy∈Y |〈ey, fx〉|. Notice, fx is bounded for each x:

|fx(f)| = |
∑
y∈Y

cy〈ey, fx〉| = ‖Ac‖`p(X) ≤ α||c||`p(Y ) ≤ β||f ||Hp .

If Hp * H, define fx as above for f =
∑
y∈Y cyey, supp c <∞. fx is still a bounded

linear functional. Then by a corollary of the Hahn Banach theorem, we can extend
fx to a bounded linear functional on the Banach space Hp complete in the norm
|| · ||Hp .

Now let f ∈ Hp, then there is a Cauchy sequence (fn)n∈N that converges to f ,
where fn =

∑
y∈Y c

′
yey, supp c

′ <∞. This limit is unique. The boundedness of the
linear functional gives us that (fx(fn))n∈N is a Cauchy sequence which converges
to fx(f) and this limit is also unique.

(a) Let C be the coefficient operator, Cf := (〈f, fx〉)x∈X . First consider f =∑
y∈Y cyey ∈ H

p ⊆ H, where c ∈ `p(Y ) and ||f ||Hp � ||c||`p(Y ). Then Cf =
(
∑
y∈Y cy〈ey, fx〉)x∈X . We have

‖Cf‖p`p(X) = ‖Ac‖p`p(X) ≤ α‖f‖
p

Hp

where A is defined as in Lemma 4.4, with (Ac)x∈X =
∑
y∈Y 〈ey, fx〉cy, and m = 1.

Hence the coefficient operator C is bounded from Hp to `p(X).
If Hp * H, then we can define C as above on finite sums. As C is continuous,

C can be extended to a bounded linear operator on the completion.

(b) Let c = (cx)x∈X be a finite sequence. Let the reconstruction operator R be
the synthesis operator:

Rc = DF̃ c =
∑
x∈X

cxf̃x.



BANACH FRAMED, DECAY IN THE CONTEXT OF LOCALIZATION 11

By a proof nearly identical to that of Proposition 2.4 in [?], we have that R is
bounded on `p(X) for 1 ≤ p ≤ ∞. If f ∈ Hp ⊆ H,

R((〈f, fx〉)x∈X) =
∑
x∈X
〈
∑
y∈Y

c′yey, fx〉f̃x =
∑
x∈X

∑
y∈Y

c′y〈ey, fx〉f̃x =
∑
y∈Y

c′yey = f.

If f ∈ Hp * H, let (fn)n∈N be a Cauchy sequence in Hp converging to f , where
fn =

∑
y∈Y c

′
yey, supp c

′ <∞. Then R((fx(fn))x∈X) = fn. Recall, fx is a bounded
linear functional, so fx(fn) converges to fx(f). As the limits are unique, we have
that R((fx(f))x∈X) = f .

(c) We have that

||Cf ||`p(X) = ||(〈f, fx〉)x∈X ||`p(X) ≤ α||f ||Hp

and
||RCf ||Hp = ||f ||Hp ≤ D||Cf ||`p(X).

Hence
1
α
||(〈f, fx〉)x∈X ||`p(X) ≤ ||f ||Hp ≤ D||(〈f, fx〉)x∈X ||`p(X).

Hence F is automatically a Banach frame for Hp. �

If we add a weight m and consider the weighted `p space `pm, we run into the
problem of having to define m for X,Y, and G. We deal with this problem by
embedding X,Y, and G into a larger space S (this generalizes the case where X,Y,
and G are subsets of Rd) and adding the extra condition that the maps aX : X →
G, aY : Y → G are such that |x− aX(x)|, |y − aY (y)| ≤ µ for some µ > 0.

Theorem 4.6. Suppose F = (fx)x∈X is a frame and E = (ey)y∈Y be a Riesz basis
for H, F , E ∈ S1, X,Y ⊂ S, where S is an abelian group. Assume G ⊂ S, and the
maps aX : X → G, aY : Y → G are such that |x− aX(x)|, |y− aY (y)| ≤ µ for some
µ > 0. Let m : S → R∗+ be a submultiplicative weight function, i.e. a non-negative,
locally integrable function on S such that for all x, y ∈ S, m(x + y) ≤ m(x)m(y).
Assume without loss of generality that m is continuous and symmetric. If F ∼ E,
then F is a Banach frame for the family of Banach spaces Hpm associated to E.

Proof. The proof is almost identical to that of the previous theorem. Notice, Lemma
4.5 still holds true if we replace Rd by S. �
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