• \(g(x) = f(x + a) \): The \(g \)-graph is determined by a horizontal shift of the \(f \)-graph \(|a|\) units to the left if \(a > 0 \), or \(|a|\) units to the right if \(a < 0 \).

• \(h(x) = f(x) + a \): The \(h \)-graph is determined by a vertical shift of the \(f \)-graph \(|a|\) units up if \(a > 0 \), or \(|a|\) units down if \(a < 0 \).

• \(k(x) = f(ax) \): The \(k \)-graph is determined by a horizontal compression of the \(f \)-graph if \(a > 1 \), or horizontal stretch of the \(f \)-graph if \(0 < a < 1 \).

• \(j(x) = af(x) \): The \(j \)-graph is determined by a vertical stretch of the \(f \)-graph if \(a > 1 \), or vertical compression of the \(f \)-graph if \(0 < a < 1 \).

• \(r(x) = f(-x) \): The \(r \)-graph is determined by reflecting the \(f \)-graph across the \(y \)-axis.

• \(s(x) = -f(x) \): The \(s \)-graph is determined by reflecting the \(f \)-graph across the \(x \)-axis.

Remarks: If \(f(-x) = f(x) \) for all \(x \) in the domain of \(f \), then \(f \) is said to be even and its graph is symmetric with respect to the \(y \)-axis. If \(g(-x) = -g(x) \) for all \(x \) in the domain of \(g \), then \(g \) is said to be odd and its graph is symmetric with respect to the origin.)