Lab Project: Shifting and Scaling

INTRODUCTION: The purpose of this lab is to graphically explore shifting and scaling functions and to gain some experience using Mathematica.

1. Suppose $f(x) = x^2 - 2x$ and define $g(x) = f(x + b)$ and $h(x) = f(x) + b$, where b represents a constant.

 (a) Using $b = 3$, graph f, g, and h on the same set of axes. How do the graphs of g and h relate to the graph of f?

 (b) Using $b = -3$, graph f, g, and h on the same set of axes. How do the graphs of g and h relate to the graph of f?

 (c) Experiment with other values of b. Then summarize the relationships between the graph of $y = f(x)$ and the graphs of $y = f(x + b)$ and $y = f(x) + b$, for $b > 0$ and for $b < 0$.
2. Suppose \(f(x) = x^2 - 2x \). Let \(p(x) = b \cdot f(x) \) and \(q(x) = f(b \cdot x) \).

(a) Using \(b = 2 \), graph \(f \), \(p \), and \(q \) on the same set of axes. How do the graphs of \(p \) and \(q \) relate to the graph of \(f \)?

(b) Using \(b = 1/2 \), graph \(f \), \(p \), and \(q \) on the same set of axes. How do the graphs of \(p \) and \(q \) relate to the graph of \(f \)?

(c) Experiment with other values of \(b \). Then summarize the relationships between the graph of \(y = f(x) \) and the graphs of \(y = f(bx) \) and \(y = bf(x) \), for \(b > 1 \) and for \(1 > b > 0 \).
3. Test your summaries given in problems 1(c) and 2(c) above as follows: Graph \(y = \sin(x) \) and graph the following four functions:

\[
p(x) = \sin(2x) \quad q(x) = 2\sin(x) \quad r(x) = \sin(x) + 2 \quad s(x) = \sin(x + 2)
\]

Provide a rough sketch of each of these functions, noting the period, amplitude, and intercepts.

In each case, explain the effect the number 2 had in modifying the graph of \(y = \sin(x) \). Are the relationships here consistent with your summaries above? If not, then modify your summaries.
4. We will now study the relationships between the graph of \(y = f(x) \) and the graphs of \(y = -f(x), y = f(-x), y = |f(x)|, \) and \(y = f(|x|) \).

Let \(f(x) = \frac{2x}{3x + 1} \).

(a) Provide a graph of \(f \) and identify its axis intercepts and its horizontal and vertical asymptotes. On this same set of axes, provide sketches of the graphs of \(y = -f(x) \) \(y = f(-x) \) and describe the relationships between these graphs and the graph of \(f \).

(b) Provide another graph of \(f \). On this same set of axes, provide sketches of the graphs of \(y = |f(x)| \) \(y = f(|x|) \) and describe the relationships between these graphs and the graph of \(f \).
5. In Figure 1, the graph of \(y = h(x) \) is given.
(a) On this figure, sketch the graphs of \(y = -h(x) \) and \(y = h(-x) \).

(b) In Figure 2, the graph of \(y = h(x) \) is given. On this figure, sketch the graphs of \(y = |h(x)| \) and \(y = h(|x|) \).