Lab Project: Area Navigation

Introduction. Suppose that \(v(t)\) is the eastward velocity (in feet per second) at time \(t\) (in seconds) of an object moving along an east-west axis. The graph of \(v\) is given below in Figure 1.

1. Use the graph of \(v\) and simple geometry to solve the following problems:
 (a) Find the signed area of the region bounded by the graph of \(v\) and the \(t\)-axis from \(t = 0\) to \(t = 10\). Then find the net distance and the total distance traveled by the object over the interval \([0, 10]\).

 (b) Find the average velocity of the object over \([0, 10]\). (i.e. Find the average value of \(v\) over \([0, 10]\).)

 (c) Find the average acceleration of the object over \([0, 10]\). (i.e. Find the average rate of change of \(v\) over \([0, 10]\).)

 (d) Find the average speed of the object over \([0, 10]\).
2. Find a piecewise-defined algebraic formula for the velocity function \(v \) as represented in Figure 1.

3. Let \(p(x) = \) “the position (in feet) of the object at time \(x \) (in seconds) relative to the origin,” for \(0 \leq x \leq 10 \), and assume \(p(0) = 3 \).
 (a) Express \(p(x) - p(0) \) as a definite integral involving \(v \).

 (b) Use the results from problems #2 and #3 (a) to find a piecewise-defined algebraic formula for the position function \(p \).

 (c) Find the average rate of change of \(p \) over the interval \([0,10]\). How does this compare with the average velocity found in problem #1 (b)?
4. Provide a graph of p below. Identify the critical numbers of p and the global maximum and minimum values of p.

5. Write out a set of “step-by-step” instructions that can be used to match the motion of the object with velocity v as represented in Figure 1.