

Evolutionary Computation for Creativity and Intelligence

By Darwin Johnson, Alice Quintanilla, and Isabel Tweraser

Introduction to NEAT

- Stands for NeuroEvolution of Augmenting Topologies (NEAT)
- Evolves an Artificial Neural Network of nodes (simple artificial "brain")
 - Generates population of ANNs to solve a problem (usually ineffective at first)
 - Best performing ANNs continue to the next generation and produce children
 - Mutates the ANNs to change the behavior
 - Alters the weight of an existing link between two nodes
 - Creates a new link between nodes
 - Creates new nodes along existing links

Child ANNs

Mutations

- Alter Link Weight
 - Alters the influence of an existing link
 - May increase or decrease the weight

- Adds a link between two existing nodes
- Creates influence from one node to another

- Add Node
 - Creates a new node along an existing link
 - Adds new influence to the final output
 - Creates new location for links to connect to

Compositional Pattern Producing Networks (CPPNS)

- Variant of ANN with variety of activation functions in its nodes
- Activation functions create patterns reminiscent of features of natural life:
 - Repetition
 - Symmetry
 - Variation

saw(1*tanh(x*0.5+(-0.75)*sin(x)) + (0.7*sin(x*(-0.25)+0.3*sin(x)))

Evolving Music and Sounds

- Use a CPPN to generate an amplitude wave
- Can be displayed and played as a sound wave
- Two extensions:
 - **Breedesizer** Evolves sounds that can be played with different frequencies/notes*
 - *Remixbreeder* Takes in a song and outputs a remixed version

*Interactively Evolving Compositional Sound Synthesis Networks. B. Jonsson, A. Hoover, S. Risi. Gecco 2015

Breedesizer Interface

Board Games

- Common tests for Artificial Intelligence
- Tic-Tac-Toe, Checkers, Othello, and more
- Several Opponent choices to create an Agent:
 - Static Opponent
 - Co-Evolution
- Evolve board evaluation functions
 - Board state evaluated by ANN
 - Move with highest output selected

Board Game Opponents

Static Opponent

Agent is evolved against a non-evolving agent.

- Used as a Benchmark
 - Easier to compare against
 - Can be considered a "goal" to reach
- Agents evolve to beat this specific Opponent
 - May not be able to beat other opponents
 - Not necessarily "good" agents

Co-Evolution

Agents are evolved against each other.

- Agents evolve as a group
 - Fitness depends on other agents in population
 - Should learn general intelligent behavior
- More difficult to benchmark
 - Unable to have a consistent opponent
 - Emergence of unusual weaknesses possible

Evaluation of Game States

Game Trees - A series of branching game states

- Created from all possible sequences of moves in a board game
- Evolved ANNs evaluate move sequences to determine the best current action
- Tree-Search several board states ahead: focus on long-term outcomes
- Searches a limited number of states due to time limit
- Several tree search algorithms exist
 - Monte-Carlo
 - Minimax
 - Minimax with alpha-beta pruning

Applying tree-search: MicroRTS

- RTS : Real-time strategy
 - Players act simultaneously
 - Actions cost time
 - Large branching factor

• MicroRTS

- Much simpler than real RTS
- Developed as AI benchmark
 - Generic unit classes
- Forward simulation
 - Know all possible future states
 - Tree-search
- Adjustable size
- International AI competition
- Using NN to evaluate game states

What does it mean to "evaluate a state" in this domain?

4 1-4-340 M F-6-540

Evolved Agent in action!

- Blue player is evolved NN
 - Evolved over night
 - Unsuited for larger maps
 - Video shows its best match
 - Performance from 21 gens
- Red player is a simple Al
 - Random behavior
 - Biased towards performing a predetermined list of actions
 - Not particularly hard to beat
- Future work
 - \circ Coevolution
 - Beating harder opponents
 - Evolve for longer

Acknowledgements

Southwestern University

Dr. Jacob Schrum

Past SCOPE students: Gabriela Gonzalez, Alex Rollins, & Lauren Gillespie

Santiago Ontañón (MicroRTS developer)

