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ABSTRACT
Neuroevolution is a powerful and general technique for evolving

the structure and weights of artificial neural networks. Though neu-

roevolutionary approaches such as NeuroEvolution of Augment-

ing Topologies (NEAT) have been successfully applied to various

problems including classification, regression, and reinforcement

learning problems, little work has explored application of these

techniques to larger-scale multiclass classification problems. In

this paper, NEAT is evaluated in several multiclass classification

problems, and then extended via two ensemble approaches: One-

vs-All and One-vs-One. These approaches decompose multiclass

classification problems into a set of binary classification problems,

in which each binary problem is solved by an instance of NEAT.

These ensemble models exhibit reduced variance and increasingly

superior accuracy as the number of classes increases. Additionally,

higher accuracy is achieved early in training, even when artificially

constrained for the sake of fair comparison with standard NEAT.

However, because the approach can be trivially distributed, it can

be applied quickly at large scale to solve real problems. In fact,

these approaches are incorporated into Darwin™, an enterprise

automatic machine learning solution that also incorporates various

other algorithmic enhancements to NEAT. The resulting complete

system has proven robust to a wide variety of client datasets.
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1 INTRODUCTION
Neuroevolution is a powerful and general technique for evolving the

weights and, in some cases, structure of artificial neural networks.

The ability to evolve the structure of the network remains a major

benefit of evolutionary approaches over optimization techniques

such as backpropagation, which tune a fixed number of parameters.

A popular approach to evolving the weights and structure of neu-

ral networks is NeuroEvolution of Augmenting Topologies (NEAT

[25]). Variants of NEAT have been successful at regression [14],

classification [4, 14], and reinforcement learning (RL) [17, 23, 24].

Because NEAT evolves networks from a simple starting point, it

generally develops the minimal structure needed to address a prob-

lem, which helps with generalization and model understandability.

However, when a complicated model is required, especially one

involving many output neurons, NEAT often struggles to optimize

all parts of the model. In particular, multiclass classification prob-

lems can be challenging for NEAT. However, ensemble approaches

can break up complex problems into manageable subproblems [11].

Ensembles leverage multiple trained models to make a joint

decision regarding whatever problem they face. This approach has

been applied using a variety of machine learning models [3, 10,

11, 16]. Ensemble approaches to neuroevolution [1, 7, 12, 22, 27]

often select ensemble members from a single evolving population.

However, in the age of Big Compute, it is easy and effective to run

multiple distinct evolutionary runs, each with its own population,

to create specialist models for subproblems within a larger task.

The approach examined in this paper is the evolution of ensem-

bles for multiclass classification problems using NEAT. Specifically,

One-vs-All and One-vs-One ensembles [11] are evolved. Despite

instantiating multiple evolutionary runs for a single problem, the

approach is not only effective at improving final classification per-

formance, but substantially more efficient in terms of time, even

without parallelizing the independent evolutionary runs.

When runs are parallelized, results are even more impressive.

In fact, the approach is so effective that that it has been incorpo-

rated into Darwin™
1
, an enterprise automatic machine learning

solution that uses neuroevolution and various other techniques,

such as backpropogation and decision trees, to produce models for

a variety of supervised, unsupervised, and RL problems. Because of

the complexity of Darwin™, this paper focuses exclusively on the

performance of standard NEAT within the domain of multiclass

classification problems and develops a straightforward compari-

son of standard NEAT to two ensemble approaches which utilize

NEAT. After presenting results that clearly demonstrate the benefit

1
https://www.sparkcognition.com/darwin/
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of these ensembling techniques applied to NEAT, the role of these

techniques within Darwin™is discussed, along with a list of the

many features of Darwin™that will be the topic of future research.

2 PREVIOUS WORK
Classification is a common supervised learning problem that has

been addressed by a variety of machine learning approaches. Simi-

larly, ensemble learning has been used with a variety of models to

achieve results superior to what could generally be achieved with

any one model. This section focuses on previous approaches to

classification and ensemble learning that rely on evolution.

Because neural networks are theoretically capable of represent-

ing any continuous function on a hypercube [6], they have been

applied to many problems in machine learning, including classi-

fication. However, despite their theoretical capabilities, training

them is non-trivial. The most common approach to training neural

networks is backpropagation. This approach has been used to train

ensembles of neural networks for multiclass classification [2].

However, the approach used in this paper is neuroevolution: the

evolution of neural networks. An early neuroevolution approach to

classification was EPNet [26], which evolved the topologies of neu-

ral networks, but used a mixture of backpropagation and simulated

annealing to train weights. This approach did not use crossover.

EPNet performed reasonably well on simple classification problems.

A later neuroevolution algorithm is NEAT [25], which is de-

scribed further in Section 3.1. Briefly, standard NEAT evolves the

topologies and weights of its neural networks without backpropa-

gation or any additional weight tuning algorithm. NEAT also allows

for efficient meaningful crossover of network genomes. NEAT and

its variants have been applied to classification problems in the past

[4, 14], attaining good results for problems with up to three classes.

NEAT has been used to evolve ensembles [22], but this approach

differs from ours in that it was applied to RL problems rather than su-

pervised classification problems, and the ensemble members came

from a single population. Our approach relies on multiple popula-

tions evolved in parallel, as described in Section 3.2.

In fact, several approaches to evolving neural network ensem-

bles (not using NEAT) take the ensemble members from a single

population. Yao and Liu evolved such an ensemble by training the

individual networks with negative correlation learning [27], but

only applied their method to binary classification problems. Ab-

bass used Pareto-based multiobjective evolution to create a single

population of neural networks trained by backpropagation, whose

Pareto front was made into an ensemble [1]. There is even a co-

operative coevolution approach by Garcia-Pedrajas et al. in which

one population has individuals that identify the neural networks of

another population that participate in an ensemble [12].

A related approach to neuroevolution of ensembles is Neural

Learning Classifier systems [7], which are an evolutionary approach

to discovering a population of rules that fire under specific circum-

stances. In this case, the rules are neural networks, which are also

trained using negative correlation learning to create an ensemble.

The experiments in this paper show that a neuroevolution ap-

proach relying only on mutation to modify its weights can evolve

several separate populations that combine into an effective ensem-

ble. The specific methods used in this approach are described next.

3 METHODS
The NEAT neuroevolution approach is described, before describing

two ensemble approaches that make use of it.

3.1 NEAT
NeuroEvolution of Augmenting Topologies (NEAT [25]) is an evo-

lutionary algorithm that evolves artificial neural networks with

arbitrary topologies. Networks start simple, but complexify over

generations via structural mutations that splice new neurons along

existing links, and add links between existing neurons. Networks

are tuned via mutations that change the weights of existing links.

The implementation of NEAT in this paper also allows for mu-

tations that delete links or nodes (and all connected links), and

change activation functions. The default activation function for

new nodes is hyperbolic tangent (tanh), but an activation function

mutation can change any node’s function to one from this set: tanh,

sigmoid, ReLU, SELU, Gaussian, softsign, square, or identity.

Other important innovations of NEAT include efficient crossover

of networks that are aligned via the tracking of historical markers,

and the use of speciation and fitness sharing to protect innovation.

NEAT has been applied to a variety of problems, including re-

gression [14], classification [4, 14], and RL problems [17, 23, 24]. As

mentioned in Section 2, it has even been used to evolve ensembles

[22], though differently from what is proposed in this paper.

When solving classification problems, every network in the

evolving population is applied to every entry of a training data

set. Each network has one output neuron for each possible class,

and the output with the highest value indicates the network’s classi-

fication. The fitness of the network is 1−CE, whereCE is the average

cross entropy loss across all training examples, where the loss for

one example is defined as −
∑k
i=1 yi ln(pi ) for k classes where yi is

a binary indicator for whether i is the correct label for the current
observation, and pi is the network output corresponding to class i .

However, because networks have one output neuron per class,

NEAT struggles with classification problems involvingmany classes.

Tuning the behavior of each output neuron is difficult, because ade-

quate network structure and suitable link weights must be evolved

for each output. Ensemble approaches overcome this problem by

dividing a multiclass classification task into sub-problems. The

ensemble approaches used in this paper are described next.

3.2 Divide and Conquer
Two divide and conquer based approaches for evolving neural net-

work ensembles are presented. Each method reduces a multiclass

classification task into a collection of binary classification tasks and

applies NEAT to each subtask to produce an ensemble which ad-

dresses the multiclass problem. Such binarization approaches have

been widely deployed [10, 11, 16], as some learning techniques

such as support vector machines were originally conceived to solve

only binary classification problems [15]. Thus, these reduction

techniques have historically provided a straightforward mecha-

nism for extending binary classifiers to multiclass problems. Such

approaches are also attractive because they are easily parallelized.

3.2.1 One-vs-All-NEAT. The first strategy explored is One-vs-

All (OVA) multiclass decomposition [11]. Given a problem with k
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Figure 1: Divide and Conquer Methodologies: Standard NEAT compared with the OVA-NEAT and OVO-NEAT divide and conquer

strategies, which decompose a multiclass problem into a set of related binary tasks and ensemble an array of NEAT champions. NEAT must

evolve more complex individual champions to be successful, whereas ensemble approaches evolve teams of specialists that are superior

despite their individual comparative simplicity. In principle, a variety of aggregation mechanisms can be used to determine the decisions of

the ensembles, though the specific mechanisms used in this paper are described in sections 3.2.1 (OVA-NEAT) and 3.2.2 (OVO-NEAT).

classes, OVA generates k binary classifiers, where each classifier is

trained to distinguish a single class from the remaining classes. We

evolve each classifier using NEAT. Specifically, k instances of NEAT

are initiated, with each instance corresponding to a single class.

The goal of each classifier is to distinguish between samples which

are a member of the class (positive samples) and those which are

not (negative samples). Each classifier is trained using all training

data, with labels modified to be -1 and +1 for negative and positive

examples respectively. The final pool of classifiers consists of a

corresponding champion from each binary classification problem.

To address the original multiclass problem, a given example is

passed through each binary classifier, and an aggregation function

is applied to the outputs to produce a final prediction. In this paper,

the aggregation function selects the highest confidence positive

sample prediction (argmax across the higher outputs of all ensemble

members). This approach is called OVA-NEAT (Figure 1).

The OVA approach is prone to imbalance issues. Each binary clas-

sifier is trained using all training data, meaning that evenwhen allN
training examples are distributed evenly between the k classes, the

decomposed problems are imbalanced, with a negative-to-positive

sample ratio of N −ni : ni , where ni is the number of positive sam-

ples available for task i . Indeed, imbalance increases as the number

of classes k increases. An alternative divide and conquer approach

does not exacerbate imbalance in this manner.

3.2.2 One-vs-One-NEAT. One-vs-One (OVO) multiclass decom-

position [11] eases imbalance and further simplifies the task of each

classifier. OVO generates
k (k−1)

2
binary classifiers, where each clas-

sifier discriminates between exactly two classes (i, j) where i , j.
These binary classifiers are once again the champions of individual

NEAT runs. At prediction time, a voting scheme is applied: the class

with the highest number of positive predictions from the pool of

pairwise classifiers is selected (Figure 1). This voting scheme is effec-

tive despite the fact that the majority of classifiers are structurally

incapable of voting for the correct class for any given sample.

OVO further simplifies the task of each classifier, which must

differentiate between only two classes. OVO also mitigates imbal-

ance concerns: balanced multiclass problems remain balanced after

decomposition. These advantages come at the expense of addi-

tional complexity. OVO generates order k2 classifiers, compared

to k classifiers generated by OVA. However, each OVO classifier is

only trained using examples from (i, j), resulting in fewer network

evaluations per generation in each subproblem.

These differences in evaluation are taken into account in order

to fairly compare these methods in the experiments described next.
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Problem Train Test k A I

hypercube 500k × 0.9 500k × 0.1 3, 5, . . . , 17, 19 10 N

mnist 60,000 10,000 10 784 N

digits 1,617 180 10 64 N

shuttle 43,500 14,500 7 9 Y

letter 15,000 5,000 26 16 N

cardio 1,613 513 3 48 Y

satellite 4,435 2,000 6 36 N

Table 1: Problem Set Descriptions. Breakdown of characteris-

tics for each experimental problem set: train and test size, classes k ,
input attributes A, and presence of label imbalance I. These prob-

lems represent a diverse set of challenging problems that allow for

interesting comparison of various methods.

4 EXPERIMENTAL SETUP
Traditional NEAT is compared to the OVO and OVA ensemble

techniques in a variety of synthetic and real-world multiclass clas-

sification problems. Since all three approaches depend on NEAT, an

open source Python implementation of NEAT
2
is used throughout

all experiments. The NEAT hyperparameter configuration used

throughout all experiments is described in Appendix A. Manual

tuning has indicated that optimal parameter choices vary slightly

for different problem sets, but the settings selected for this paper

work well with all participating datasets.

Different classification approaches are compared in terms of wall

time using the same hardware and underlying NEAT configuration.

All experiments are run on a Google Cloud instance with 64 Intel

Haswell vCPUs and 240 GB of RAM. Although comparing evolu-

tionary approaches in terms of the number of generations or the

number of fitness evaluations is more common in the literature,

such a comparison would obscure the fact that evolved networks

of different complexity take varying amounts of time to evaluate.

Specifically, models evolved by NEAT for multiclass problems are

more complex than their binary decomposed counterparts. Models

also growmore complex over time, meaning that evaluation is more

computationally expensive as generations progress.

To make the comparison between standard NEAT and ensemble

approaches as fair as possible, individual runs are allotted one hour

to complete. For standard NEAT, a single run simply progresses for

as many generations as possible within one hour, though fitness

often stagnates short of the allotted time. For ensemble approaches,

each component run of NEAT is only allowed to run for one portion

of an hour, where portions are determined by evenly dividing the

hour by the number of component models to be evolved. To as-

sure fair use of the available hardware resources, these component

NEAT runs occur sequentially, so that the total time to complete

one ensembling run is still one hour. However, in practice the in-

herent parallelism of these ensemble approaches allows for much

greater efficiency, so the results presented could actually have been

achieved in a fraction of the allotted time.

Datasets used in all experiments are multiclass classification

problems (k > 2) either taken from the literature or generated

2
https://github.com/CodeReclaimers/neat-python

using open source libraries. Synthetic datasets were generated us-

ing the make_classification function available in the popular

scikit-learn Python package
3
, which generates clusters of normally

distributed points about the vertices of a hypercube of configurable

dimensionality and offers control over problem difficulty through

parameters such as the number of informative features, interde-

pendence between features, samples, noise, and classes for a given

generated dataset [13]. These datasets are referred to as synthetic
hypercube datasets throughout the paper. Additionally, a variety
of widely used multiclass classification problem sets from the UCI

Repository of Machine Learning Datasets were selected to form a

more realistic breadth of evaluation [19]. Characteristics of these

problem sets are cataloged in Table 1.

5 RESULTS
The results indicate that ensemble approaches are superior to stan-

dard NEAT, especially as the number of classes grows, in both

synthetic and real-world problems. From this point on, each ap-

proach is referred to with Smallcaps (e.g., Neat), and experimental

datasets are referred to in boldface. Results explore the following
themes in order: degradation as the number of classes increases; effi-

ciency of evolution; breadth evaluation across open source datasets;

and finally, complexity and behavior of evolved models.

5.1 Multiclass Degradation
Divide and conquer approaches always perform at least as well as

Neat, with large gaps in performance developing as the number of

classes increases. Figure 2 displays the performance of Neat, Ova-

Neat, andOvo-Neat on tasks featuring a varying number of classes.

The tasks were generated using the synthetic hypercube method

described in Section 4: classification problems with k target classes

are generated for k ∈ {3, 5, . . . , 17, 19} with 5 informative input

attributes, 10 total attributes, 500 samples per class, and a separation

distance between hypercube vertices of 1.5. Results are reported

only on a holdout test set which was selected randomly using a

90/10 train-test split from the generated data and averaged over ten

separate runs. Translucent bands indicate 95% confidence intervals

using bootstrap sampling. As the number of classes increases, the

performance of Neat rapidly degrades, while Ova-Neat and Ovo-

Neat hold steady, dropping less than 0.05 in F1 score. Final F1

scores for each ensemble approach are significantly better than

Neat’s for k ≥ 7 (Wilcoxon Rank-Sum Test, p < 0.05). For the

k = 19 case, ensemble F1 scores are about 0.7 greater than NEAT’s,

or over 400% greater. Furthermore, the translucent bands indicate

that Ova-Neat and Ovo-Neat exhibit less variance than Neat, a

result consistent with ensemble work using other models [11].

5.2 Evolutionary Efficiency
Although ensemble methods have better final performance as the

number of classes increases, it is natural to question how efficient

these approaches are. Figure 3 displays the training curves for

Neat, Ova-Neat, and Ovo-Neat for one problem instance (where

k = 15) from Figure 2.Ova-Neat andOvo-Neat converge to higher

performance much more quickly. For most experiments, ensemble

methods reached higher quality predictions within the first five

3
http://scikit-learn.org/stable/

https://github.com/CodeReclaimers/neat-python
http://scikit-learn.org/stable/
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Figure 2: Performance vs. Number of Classes. Average final
champion F1 scores across 10 independent one-hour runs reported

for validation data as classes increase for synthetic hypercube

classification problems. Translucent bands indicate 95% confidence

intervals computed using bootstrap sampling.

Figure 3: Training Curves. Average champion F1 score across 10

runs on validation data taken at checkpoints every 600 seconds on

the synthetic hypercube classification problem for k = 15. Translu-

cent bands indicate 95% confidence computed using bootstrap sam-

pling. The 600 second training intervals are evenly divided among

constituent models for ensemble methods.

minutes (the first cross-validation checkpoint) than Neat was able

to achieve over the course of the entire hour. Furthermore, ensemble

methods offer reduced variance at each checkpoint.

Between the ensemble approaches, Ova-Neat tends to produce

higher F1 scores overall (Figure 2) and in less time (Figure 3). How-

ever, Ovo-Neat is slightly (though not significantly) more robust

given sufficient time on problems with a large number of classes.

Both of these observations can be understood as consequences of

the binarization process for Ovo-Neat, which avoids contributing

to data imbalance at the expense of a non-linear increase in the

number of component models. Interestingly, even at the rightmost

extremity of Figure 2, where k = 19 means the number of compo-

nent models is (19(19 − 1))/2 = 171 and the cumulative evolution

time allotted to each model is a mere 3600/171 = 21.05 seconds,

Ovo-Neat still provides the best performance.

Though not reported, results with real data sets were similar.

5.3 Breadth Evaluation
Having characterized the degradation of Neat and its divide and

conquer counterparts using an array of synthetic problems, each

approach is now applied to a variety of publicly available datasets

(Section 4). Table 2 contains evaluation metrics for each of the

problems described in Table 1 averaged over ten independent one

hour experiments. In each case, metrics are recorded for only the

test set. Four metrics are reported: (1) Accuracy, the classification
accuracy; (2) F1, a weighted average of the precision and recall

averaged for each class; (3) W-F1, the F1 score weighted by the

number of samples from each class to account for imbalance; and

(4) Variance observed in F1 score over the runs.

5.3.1 Performance. Each divide and conquer approach outper-

formsNeat, with ties only occurring on easier datasets, whereNeat

already scores quite high. Furthermore, as in Figure 2, the ensemble

approaches offer increasingly superior performance as the number

of classes increases. For the three problems with the most classes,

mnist, digits, and letter, Ova-Neat and Ovo-Neat offer 70-270%

improvements in F1 score. In the most extreme case, the 26 class

letter dataset, there was a 0.463 gap in F1 score between Neat and

Ovo-Neat, which is particularly remarkable because Ovo-Neat

evolves 26(26 − 1)/2 = 325 models for this problem, leaving only

3600/325 = 11.07 seconds of evolution for each constituent model

over the course of each experiment. Additional training time or

computational resources result in substantial performance gains for

Ovo-Neat on this problem set. In a follow-up experiment (results

not in Table 2), Ovo-Neat was restricted to the same one hour

training period but allowed to train up to 16 models in parallel,

resulting in a final F1 score of 0.91, a 44% increase in F1 score over

sequential Ovo-Neat and over 5x the F1 score achieve by Neat.

Interestingly, an additional experiment which allotted 16 hours

of total training time to Neat (to match the conceivable benefits

from parallelism offered to Ovo-Neat) yielded negligible gains in

validation accuracy over the added 15 hours of training.

The performance from Ovo-Neat is comparable to results re-

ported by a prior study [16] which applied hand-tuned SVMs ag-

gregated using the OVO and OVA paradigms to a subset of the

evaluations here. For example, the 0.999 accuracy score on the

shuttle dataset exactly matches the numbers reported by SVMs,

while the 0.881 and 0.910 accuracies on satellite and cardio are

within 5% of SVM performance.



GECCO ’18, July 15–19, 2018, Kyoto, Japan
T. McDonnell, S. Andoni, E. Bonab, S. Cheng, J. Choi, J. Goode, K. Moore, G. Sellers, and J. Schrum

Neat Ovo-Neat Ova-Neat

Problem Accuracy F1 W-F1 Variance Accuracy F1 W-F1 Variance Accuracy F1 W-F1 Variance

mnist 0.472 0.367 0.365 0.00381 0.916 0.916 0.916 0.00008 0.806 0.801 0.799 0.00009

digits 0.600 0.541 0.508 0.00447 0.982 0.983 0.975 0.00017 0.939 0.939 0.939 0.00036

shuttle 0.986 0.985 0.420 0.00010 0.999 0.999 0.998 0.00004 0.998 0.931 0.928 0.00016

letter 0.253 0.169 0.165 0.00102 0.628 0.632 0.630 0.00016 0.484 0.485 0.454 0.00060

cardio 0.990 0.990 0.986 0.00006 0.999 0.999 0.988 0.00001 0.988 0.988 0.986 0.00008

satellite 0.810 0.765 0.708 0.00067 0.881 0.878 0.860 0.00047 0.841 0.838 0.809 0.00060

Table 2: Performance Results. Collected and averaged over 10 independent one hour runs for each method and problem set. Ovo-Neat

performs best in every category on every data set, as indicated by the bold scores, which are the best in each row. Scores that are underlined

indicate results that are significantly better than Neat according to a Wilcoxon Rank-Sum test at the p < 0.05 level.

Neat Ovo-Neat Ova-Neat

Problem Generations Nodes Connections Generations Nodes Connections Generations Nodes Connections

mnist 1,046 94 223 4,790 (106) 1,002 (22) 2,578 (57) 2,877 (288) 337 (34) 817 (82)

digits 2,249 51 148 4,804 (107) 986 (22) 2,717 (60) 3,667 (367) 399 (40) 1073 (107)

shuttle 933 81 205 3,199 (152) 356 (17) 871 (41) 2,607 (372) 264 (38) 647 (92)

letter 1,201 79 182 4,264 (13) 2,313 (7) 14,739 (45) 3,197 (123) 560 (22) 1478 (57)

cardio 967 71 215 1,842 (614) 153 (51) 472 (157) 1,582 (527) 210 (70) 594 (198)

satellite 1,163 72 216 3,807 (254) 465 (31) 1,354 (90) 2,819 (470) 339 (57) 935 (156)

Table 3: Network Complexity. Across 10 runs, the average number of generations to produce champions with an average number of

network nodes and links are presented. Ensemble entries are the sums across all constituent runs/champions, but parenthesized values are

averaged over these constituent runs/models. Values rounded to nearest whole number.

5.3.2 Imbalance. Ovo-Neat provided the best performance on

problems with label imbalance, though both divide and conquer

techniques outperformed Neat on such problems. Two of the ex-

perimental datasets (shuttle and cardio) featured heavy class im-

balance, with 80% and 78% of examples belonging to a single class,

respectively. In the shuttle dataset, the remaining samples are split

between six classes, whereas in cardio, the remaining samples are

split between only two classes. Ovo-Neat achieved a considerably

higher W-F1 score than Ova-Neat on the shuttle dataset (0.998

vs. 0.928), the more difficult of the two imbalanced datasets. This

result follows intuition: recall from Section 3 that the binarization

procedure of Ova-Neat exacerbates imbalance issues. Interestingly,

Neat produces a high accuracy on both imbalanced datasets, but a

remarkably low W-F1 score of 0.420 on the 7 class shuttle dataset.
In contrast, it produces a W-F1 comparable to Ova-Neat and Ovo-

Neat on the 3 class cardio problem. These results suggest that

Neat learns to discriminate between the most common labels (i.e.,

those which provide the largest fitness boost), but struggles to

adapt to minority classes in larger multiclass problems. It is worth

mentioning that numerous established mechanisms exist for coun-

tering imbalance, such as sampling or re-weighting of the fitness

function [20]. This paper purposely neglects such methods in order

to characterize the natural behavior of each approach; however,

additional experiments have produced performance increases for

all three approaches through re-weighting of the fitness function.

5.3.3 Variance. Ensemble approaches also reduce variance across

experimental runs. Table 2 displays the variance in F1 score of each

dataset. Overall, Ova-Neat exhibited less variance than Neat in 4

out of the 6 experiments, with an 81% average reduction in variance.

Ovo-Neat offered the lowest variance across all datasets. These

results are consistent with previous research. Specifically, Neat

is stochastic and vulnerable to what prior literature has named

the statistical problem, in which a learning algorithm may indepen-

dently discover multiple hypotheses which provide similar training

accuracy but different generalization capabilities [9]. Decomposi-

tion helps ameliorate this risk both by simplifying the search space

of hypotheses and entertaining multiple votes from constituent

models and thus reducing dependence on any single hypothesis.

5.4 Evolved Complexity
Ova-Neat and Ovo-Neat tend to not only develop more robust

solutions, but also develop themmore quickly. Table 3 offers further

insight into these mechanisms. The total number of generations, as

well as a count of the total number of nodes and connections of the

evolved champion model(s) for each approach and experiment are

shown. For ensemble approaches, the sum across all constituent

networks is shown, as well as the average per evolved network (in

parenthesis). In each case, Ova-Neat and Ovo-Neat develop sub-

stantially more total nodes and connections, reaching a maximum

of nearly 30x as many nodes in the case of Ovo-Neat on the letter
dataset. Despite this richer structure, Ova-Neat and Ovo-Neat

are able to accumulate far more generations of total evolutionary

innovation in the same amount of time. This is because the average

network in the population of any NEAT instance of an ensemble

has fewer nodes and connections (parenthesized values in Table 3),

which in turn results in less evaluation time per generation.

5.5 Behavioral Analysis
Analysis of Figure 2 and Table 2 suggests that though performance

of Neat is stable for smaller multiclass problems, it degrades rapidly
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Figure 4: Aggregate Behavioral Heatmaps. Heatmaps of Neat (top) and Ovo-Neat (bottom) behavior on a synthetic hypercube problem

with 10 classes and 100 samples per class. Rows represent different classes. Columns represent samples within a class. A particular cell

represents the number of independent runs out of 10 in which the final model correctly classifies the sample, with darker colors indicating a

higher number of successful classifications, and white indicating that zero models could classify the sample. For Neat, some rows are darker

than others, but most samples have a pink color for a middling value between 0 and 10. In contrast, all rows are dark in the Ovo-Neat

heatmap, indicating that it tends to classify most samples from every class correctly on every run.

Figure 5: Single-Run Behavioral Heatmaps. Heatmaps of Neat (top) and Ovo-Neat (bottom) behavior on a single run of the synthetic

hypercube problem with 10 classes and 100 samples per class. Samples are organized as in Figure 4, but now there are only two colors: pink

(lighter) indicates an incorrect classification, and purple (darker) indicates a correct classification. Neat correctly classifies samples from a

subset of classes, with zero discrimination between the remaining. Ovo-Neat correctly classifies the majority of samples from all classes.

as the number of classes increases, with an inflection point some-

where in the 5–7 class range. The following two figures clarify how

Neat is failing for large k .
Figure 4 is a heatmap visualization of the sample-wise classifi-

cation accuracy of both Neat and Ovo-Neat across ten runs of a

synthetic hypercube problem (Section 4) with k = 10 classes and

100 samples per class. Rows represent different classes, and columns

represent samples within a class. Darker shades of purple indicate

that more runs successfully classify the sample, while white indi-

cates zero runs correctly classify the sample. The behavior of the

two approaches is very different. For Neat, some rows are darker

than others, but the average sample was classified correctly in only

3–6 of the ten runs. In contrast, nearly all samples in all rows are

classified correctly in every run by Ovo-Neat.

Figure 5 is the same behavioral matrix produced by only a single

run of each approach. Pink (lighter) indicates an incorrect classi-

fication, whereas purple (darker) indicates a correct classification.

Here, the behavioral differences are clear. Neat correctly classifies

samples from exactly six of the classes, with zero discrimination

of the remaining classes, while Ovo-Neat correctly classifies the

majority of samples from all classes. This behavior helps explain

Figure 4. In a single run, Neat only evolves topology capable of dis-

criminating between a subset of classes, with some soft limitation

between 5–7 classes. The subset of classes captured by Neat on any

particular run is somewhat random, resulting in the mid-range heat

of each cell in Figure 4, but some (e.g., “easier” classes or classes

with more samples) are more likely to be captured in practice.

6 DISCUSSION AND FUTUREWORK
The results show that divide and conquer ensemble approaches

offer a variety of benefits when applying NEAT tomulticlass classifi-

cation problems. The resultant ensembles exhibit reduced variance,

superior classification accuracy as the number of classes increases,

and improved evolutionary efficiency. This added efficiency derives

from the reduced search spaces of the decomposed problems, which

admit simpler solutions with fewer nodes and connections, allowing

for faster evaluation and richer overall structure. Though standard

NEAT can be applied to multiclass problems, it seems better suited

to problems with five or fewer classes, making it an ideal candidate

for decomposition techniques that have historically been used to

extend fundamentally binary classifiers to multiclass problems. Fur-

thermore, divide and conquer approaches introduce a natural point

of parallelization that is trivial to leverage in practice. Constituent

models may be evolved in different threads, processes, machines, or

clusters simultaneously with zero communication between partici-

pating nodes. Communication is only necessary when aggregating

the decisions of models, enabling enterprise-level applications.
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Specifically, Darwin™ is an enterprise automatic machine learn-

ing solution which automates data cleaning, pattern discovery, and

model creation for data science problems. Darwin™uses a patented

combination of genetic and deep learning approaches to converge

upon a generalized solution for any supervised, unsupervised, or

reinforcement learning problem. The approaches in this paper are

among a body of innovations which allow for effective distributed

model-building. Though this paper focuses on the simplest instanti-

ation of NEAT, through Darwin™, these ensemble approaches have

also been combined with many other enhancements that will be

the topic of future research. Specific enhancements include support

for deeper architectures, Novelty Search [18], multiobjective opti-

mization [8], the Limited Evaluation Evolutionary Algorithm [21],

occasional incorporation of decision trees [5], and application of

backpropagation, when appropriate. These various enhancements

allow Darwin™to exceed the already impressive performance of

pure OVA-NEAT and OVO-NEAT.

With regard to ensemble methods, this paper has shown that

ensembles using NEAT are highly effective with a simple decom-

position scheme. Future work can pursue further decomposition

of binary classification tasks into sub-problems which capture dif-

ferent modes of behavior within classes, which could be useful for

complex classification tasks, particularly ones in which a single

class consists of multiple unknown/hidden subclasses.

Alternatively, future work might examine complexification as

a means of improving classification performance. For example, it

is possible that the binarization processes used obscure inter-class

information relevant to evolving higher-level structure, such as

the information typically encoded in the deeper layers of a deep

neural network. If the component networks of an ensemble were

periodically merged and evolved/trained further, more complex

structure could be discovered, allowing for better discrimination.

7 CONCLUSION
OVA-NEAT and OVO-NEAT are two multiclass classification ap-

proaches that combine NEAT with established ensemble methods

to attain high performance that greatly surpasses standard NEAT.

These techniques are part of the enterprise-level automatic machine

learning solution Darwin™, that leverages the highly parallelizable

nature of these approaches to quickly solve a variety of data science

problems. Future work will analyze many other enhancements to

Darwin™, and the ensemble approaches explored here.
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A NEAT CONFIGURATION
NEAT configuration hyperparameters used for experiments:

pop_size = 200; max_fitness_threshold = 1.0;
initial_connection = 0.1; feed_forward = True;
compatibility_disjoint_coefficient = 1.0;
compatibility_weight_coefficient = 0.6;
conn_add_prob = 0.8; conn_delete_prob = 0.1;
node_add_prob = 0.7; node_delete_prob = 0.1;
activation_mutate_rate = 0.3; bias_mutate_rate = 0.7;
response_mutate_rate = 0.0; weight_mutate_rate = 0.8;
compatibility_threshold = 2.5; max_stagnation = 15;
elite_species = 3; survival_threshold = 0.2;
elitism = 2;
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