SYMMETRICALLY LOCALIZED FRAMES AND THE REMOVAL OF SUBSETS OF POSITIVE DENSITY

FUMIKO FUTAMURA

Abstract. The theorems of Balan, Casazza, Heil, and Landau concerning the removal of sets of positive density from frames with positive excess are extended using a more general, symmetric concept of localization of frames.

1. Introduction

The concept of localization of frames was recently introduced independently by Gröchenig [18] and the group consisting of Balan, Casazza, Heil, and Landau (BCHL) [4]. Frames having this new localization property are interesting in a number of ways; Gröchenig proved that a frame localized with respect to a Riesz basis is automatically a Banach frame for an often important family of Banach spaces associated to the Riesz basis and BCHL proved that the excess of an overcomplete localized frame has a certain degree of uniformity, and were able to give conditions under which excess of positive density could be removed from an overcomplete localized frame. As often happens when a concept is introduced independently by several parties, the definitions found in [18] and [4] are different enough so that one definition is not a special case of the other, and are specific to their respective purposes. A more general definition which encompasses both Gröchenig’s and BCHL’s definitions in the most useful cases is introduced in [15]. This definition allows for a useful and natural equivalence class structure when dealing with l^1-self-localized frames, and extends the results of Gröchenig [15]. In this paper, we focus on extending the results of BCHL involving removing excess of positive density. In Section 2, we define symmetric localization. In Section 3, we provide the necessary definitions from [2]. In Section 4 we extend the Density-Relative Measure Theorem and the theorem concerning the removal of sets of positive density.

2. Symmetric Localization

Before introducing the new definition, we fix basic notation. We recommend [8], [10], [11], [12] and [16] for additional background.

Let $\mathcal{F} = \{f_x\}_{x \in X}$ be a frame for a separable Hilbert space \mathcal{H} with frame bounds A, B. The analysis operator will be denoted $C : \mathcal{H} \rightarrow l^2(X), \ C(f) = \{(f, f_x)\}_{x \in X}$. The synthesis operator denoted $D : l^2(X) \rightarrow \mathcal{H}, \ D(\{c_x\}_{x \in X}) = \sum c_x f_x$ is the adjoint of C, $D = C^*$. The frame operator denoted $S = DC : \mathcal{H} \rightarrow \mathcal{H}, \ Sf = \sum_{x \in X} (f, f_x) f_x$ is a positive, invertible operator such that $A \cdot I \leq S \leq B \cdot I$.

The canonical dual frame of \mathcal{F} will be denoted $\tilde{\mathcal{F}} = \{\tilde{f}_x\}_{x \in X} := \{S^{-1}f_x\}_{x \in X}$. A frame sequence $\mathcal{F} = \{f_x\}_{x \in X}$ is a frame for the closure of its span.
In the following, let G be a group of the form $\prod_{i=1}^{d} a_i \mathbb{Z} \times \prod_{j=1}^{d} \mathbb{Z}_{b_j}$. For every $g = (a_1 n_1, a_2 n_2, ..., a_d n_d, m_1, m_2, ..., m_e) \in G$, let

$$|g| = \sup \{|a_1 n_1|, |a_2 n_2|, ..., |a_d n_d|, \delta(m_1), \delta(m_2), ..., \delta(m_e)\}$$

where

$$\delta(m_j) = \begin{cases} 0 & \text{if } m_j = 0; \\ 1 & \text{otherwise.} \end{cases}$$

Define a metric on G by $d(g, h) = |g - h|$ for $g, h \in G$. Let $S_n(j)$ denote the ball of radius n centered at j in G and $|S_n(j)| := \#|S_n(j)|$, the cardinality of $S_n(j)$.

Definition 2.1 (Symmetric localization). Let $\mathcal{F} = \{f_x\}_{x \in X}$ and $\mathcal{E} = \{e_y\}_{y \in Y}$ be sequences in a Hilbert space \mathcal{H}, X and Y arbitrary index sets.

1. $(\mathcal{F}, \mathcal{E})$ is **symmetrically l^p-localized** if there exist maps $a_X : X \to G$, $a_Y : Y \to G$ such that $\sup_{j \in G} |a_X^{-1}(j)|, \sup_{j \in G} |a_Y^{-1}(j)| \leq K < \infty$, and $r \in l^p(G)$ such that for all $x \in X, y \in Y$,

$$|(f_x, e_y)| \leq r_{a_X(x) - a_Y(y)}.$$

2. $(\mathcal{F}, \mathcal{E})$ has **uniform l^p column decay** if for every $\epsilon > 0$ there is a $N_\epsilon > 0$ such that for all $y \in Y$,

$$\sum_{x \in X \setminus a_X^{-1}(S_{N_\epsilon}(a_Y(y)))} |(f_x, e_y)|^p < \epsilon.$$

3. $(\mathcal{F}, \mathcal{E})$ has **uniform l^p row decay** if for every $\epsilon > 0$ there is a $N_\epsilon > 0$ such that for all $x \in X$,

$$\sum_{y \in Y \setminus a_Y^{-1}(S_{N_\epsilon}(a_X(x)))} |(f_x, e_y)|^p < \epsilon.$$

Remark 2.2. The terms column and row decay come from considering the cross-grammian matrix $|(f_x, e_y)|_{X,Y}$.

If we let $Y = G$ and $a_Y = \text{id}$, then we have the definition of BCHL provided $\sup_{j \in G} |a_X^{-1}(j)| \leq K < \infty$. Bounded point inverses are not only desired in applications but also used in nearly all of the theorems of BCHL so it is not a restrictive condition. This definition does not extend the definition of Gröchenig, however, every frame localized in the sense of Gröchenig is symmetrically localized. This is proved in [15].

Example 2.3. Let $\mathcal{F} = \{f_k := \sin[\pi(x+k)]\}_{k \in \mathbb{Z}}$ and $\mathcal{E} = \{e_n := \sin[\pi(x+n)]\}_{n \in \mathbb{Z}}$ be contained in $L^2(\mathbb{R})$. \mathcal{F} is a frame, with frame bounds $A = B = 2$, and \mathcal{E} is an orthonormal basis. Let $a_\mathcal{E} : \mathbb{Z} \to \mathbb{Z}$ be the identity function, and $a_\mathcal{F} : \frac{1}{2}\mathbb{Z} \to \mathbb{Z}$ defined

$$a_\mathcal{F}(k) = \begin{cases} k & \text{if } k \in \mathbb{Z}; \\ k - 1/2 & \text{if } k \in \mathbb{Z}^+; \\ k + 1/2 & \text{if } k \in \mathbb{Z}^-; \end{cases}$$

Then \mathcal{F} is l^p localized with respect to \mathcal{E}, for any $p > 1$, as

$$|(f_k, e_n)| = \begin{cases} 1 & \text{if } k = n; \\ 0 & \text{if } k \in \mathbb{Z}, k \neq n; \\ \frac{1}{|k-n|^p} & \text{if } k \notin \mathbb{Z}. \end{cases}$$
\[\frac{1}{|k-n|^{\pi}} \leq \frac{1}{|a(k-n)|^{\pi}} \text{ for } |a(k-n)| \neq 0 \text{ so we have } |\langle f_k, e_n \rangle| \leq r_{a(k-n)} \text{, where} \]

\[r_g = \begin{cases}
 \frac{1}{|g|^{\pi}} & \text{if } g = 0; \\
 \frac{1}{|g|^{\pi}} & \text{if } g \neq 0,
\end{cases} \]

\[r \in L^p(\mathbb{Z}), p > 1. \]

3. Definitions of Density, Measure, and Excess

Throughout this section, let \(\mathcal{F} = \{f_x\}_{x \in X} \) and \(\mathcal{E} = \{e_y\}_{y \in Y} \) be frame sequences for Hilbert space \(\mathcal{H} \), \(X \) and \(Y \) arbitrary index sets. Let \(a_X : X \to G \), \(a_Y : Y \to G \) be associated maps such that \(|a_X^{-1}(j)|, |a_Y^{-1}(j)| \leq K < \infty \) for all \(j \in G \). We will also use free ultrafilters for more flexibility in convergence; free ultrafilters are discussed in the Appendix.

Definition 3.1. The lower and upper densities of \(\mathcal{F} = \{f_x\}_{x \in X} \) with respect to \(a_X \) are respectively

\[D^-(a_X) = \lim \inf_{N \to \infty} \inf_{j \in G} \frac{|a_X^{-1} S_N(j)|}{|S_N(j)|} \]

and

\[D^+(a_X) = \lim \inf_{N \to \infty} \inf_{j \in G} \frac{|a_X^{-1} S_N(j)|}{|S_N(j)|}. \]

Let \(c = \{c_N\}_{N \in \mathbb{N}} \) be any sequence, \(p \) a free ultrafilter. The density with respect to \(a_X, p, c \) is

\[D(p, c) := D(p, c; a_X) = p - \lim_{N \to \infty} \frac{|a_X^{-1} S_N(c_N)|}{|S_N(c_N)|}. \]

If any of these expressions do not exist, then the respective density is \(\infty \).

Definition 3.2. The relative measure of \(\mathcal{F} \) with respect to \(\mathcal{E}, p, c \) is

\[M_\mathcal{E}(\mathcal{F}, p, c) = p - \lim_{N \to \infty} \frac{\sum_{x \in a_X^{-1} S_N(c_N)} \langle P_\mathcal{E} f_x, \tilde{f}_x \rangle}{|a_X^{-1} S_N(c_N)|}. \]

The relative measure of \(\mathcal{E} \) with respect to \(\mathcal{F}, p, c \) is

\[M_\mathcal{F}(\mathcal{E}, p, c) = p - \lim_{N \to \infty} \frac{\sum_{y \in a_Y^{-1} S_N(c_N)} \langle P_\mathcal{F} e_y, \tilde{e}_y \rangle}{|a_Y^{-1} S_N(c_N)|}. \]

In the case that \(\overline{\text{span}}(\mathcal{F}) \subseteq \overline{\text{span}}(\mathcal{E}) \), \(P_\mathcal{E} \) is the identity map so we can define the following:

The measure of \(\mathcal{F} \) with respect to \(p, c \) is

\[M(\mathcal{F}, p, c) = p - \lim_{N \to \infty} \frac{\sum_{x \in a_X^{-1} S_N(c_N)} \langle f_x, \tilde{f}_x \rangle}{|a_X^{-1} S_N(c_N)|}. \]

The lower and upper measures of \(\mathcal{F} \) are respectively

\[M^-(\mathcal{F}) = \lim \inf_{N \to \infty} \inf_{j \in G} \frac{\sum_{x \in a_X^{-1} S_N(j)} \langle f_x, \tilde{f}_x \rangle}{|a_X^{-1} S_N(j)|} \]

and

\[M^+(\mathcal{F}) = \lim \sup_{N \to \infty} \sup_{j \in G} \frac{\sum_{x \in a_X^{-1} S_N(j)} \langle f_x, \tilde{f}_x \rangle}{|a_X^{-1} S_N(j)|}. \]
If \(\text{span}(E) \subseteq \text{span}(F) \), we can define \(M^-(E), M^+(E), M(E, p, c) \) analogously. \[\text{Definition 3.3.} \] The excess of a frame is the greatest integer \(n \) such that \(n \) elements can be deleted from a frame and still leave a complete set. The excess is infinite if there is no such upper bound.

Example 3.4. Let \(F = \{ f_k := \frac{\sin[\pi(x + k)]}{\pi(x + k)} \}_{k \in \mathbb{Z}} \) and \(E = \{ e_n := \frac{\sin[\pi(x + n)]}{\pi(x + n)} \}_{n \in \mathbb{Z}} \), and suppose \(a_{\frac{1}{2}Z} : \frac{1}{2} \mathbb{Z} \to \mathbb{Z} \) and \(a_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z} \) are defined as in the previous example. Then

\[
D^-(a_{\frac{1}{2}Z}) = \liminf_{n \to \infty} \inf_{j \in G} \frac{|a^{-1} S_{n}(j)|}{|S_{n}(j)|} = \frac{2(2n + 1)}{2n + 1} = 2 = D^+(a_{\frac{1}{2}Z}),
\]

\[
M^-(F) = \liminf_{n \to \infty} \inf_{j \in G} \frac{\sum_{k \in a^{-1} S_{n}(j)} \langle f_k, S^{-1} f_k \rangle}{|a^{-1} S_{n}(j)|} = \liminf_{n \to \infty} \inf_{j \in G} \frac{\sum_{k \in a^{-1} S_{n}(j)} ||S^{-1/2} f_k||^2}{2(2n + 1)} = \frac{1}{2}.
\]

Likewise, \(M^+(F) = 1/2 \). By a similar proof, \(D^-(a_{\mathbb{Z}}) = D^+(a_{\mathbb{Z}}) = 1 \) and \(M^-(E) = M^+(E) = 1 \).

4. Extending the results

4.1. Density-Relative Measure Theorem. A major result in [4] relates density and relative measure such that, in particular, for \(E \) a Riesz basis, the relative measure and density are reciprocals of each other. This in turn allows one to quantify the redundancy of a frame by the reciprocal of the relative measure. We extend their theorem using the new definition. The proof is close to that of BCHL.

For the following theorem, let

\[
d_X := \frac{|a_X^{-1} S_N(c_N)|}{|S_N(c_N)|}, \quad \text{and} \quad m_X := \frac{\sum_{x \in a_X^{-1} S_N(c_N)} \langle f_x, \tilde{f}_x \rangle}{|a_X^{-1} S_N(c_N)|}.
\]

Theorem 4.1. Density-Relative Measure Theorem

Let \(F = \{ f_x \}_{x \in X} \) and \(E = \{ e_y \}_{y \in Y} \) be frame sequences for Hilbert space \(\mathcal{H} \), \(X \) and \(Y \) arbitrary index sets. Denote by \(\tilde{F} = \{ \tilde{f}_x \}_{x \in X} \) and \(\tilde{E} = \{ \tilde{e}_y \}_{y \in Y} \) the duals of \(F \) and \(E \) respectively. Let \(a_X : \mathbb{R} \to G \), \(a_Y : \mathbb{R} \to G \) be maps. If \(D^+(a_X), D^+(a_Y) < \infty \), and \((F, E) \) has \(l^2 \)-column decay and \(l^2 \)-row decay, then the following statements hold.

(a) For every sequence \(c = \{ c_N \}_{N \in \mathbb{N}} \subseteq G \),

\[\lim_{N \to \infty} [d_Y m_Y - d_X m_X] = 0. \]

(b) For every sequence \(c = \{ c_N \}_{N \in \mathbb{N}} \subseteq G \) and free ultrafilter \(p \),

\[D(p, c; a_Y) M_F(E, p, c) = D(p, c; a_X) M_E(F, p, c). \]

Proof. a) Fix some sequence \(c = \{ c_N \}_{N \in \mathbb{N}} \subseteq G \). We must show that \(|d_Y m_Y - d_X m_X| \to 0. First, we make some preliminary observations and introduce some notation. Let \(A \) and \(B \), \(A' \) and \(B' \) denote frame bounds for \(F \) and \(E \) respectively.
Then \(\tilde{F} \) and \(\tilde{E} \) have frame bounds \(\frac{1}{B} \) and \(\frac{1}{A} \), respectively. Consequently, for \(x \in X \) and \(y \in Y \),

\[
||f_x||^2 \leq B, ||\tilde{f}_x||^2 \leq \frac{1}{A}, ||e_y||^2 \leq B', ||\tilde{e}_y||^2 \leq \frac{1}{A'}
\]

Fix any \(\epsilon > 0 \). Since \((F, a_{X}, a_{Y}, E) \) has both \(l^2 \) row decay and \(l^2 \) column decay, there exists an integer \(N_\epsilon > 0 \) such that for all \(y \in Y \),

\[
\sum_{x \in X \setminus \alpha_X^{-1}(S_{N_\epsilon}(a_Y(y)))} ||(f_x, e_y)||^2 \leq \epsilon
\]

and for all \(x \in X \),

\[
\sum_{y \in Y \setminus \alpha_Y^{-1}(S_{N_\epsilon}(a_X(x)))} ||(f_x, e_y)||^2 < \epsilon.
\]

Also, since \(D^+(a_{X}), D^+(a_{Y}) < \infty \), we have

\[
K = \max\{\sup_{j \in G} |a_X^{-1}(j)|, \sup_{j \in G} |a_Y^{-1}(j)|\} < \infty,
\]

and for any set \(\Gamma \) contained in \(G \), we have \(|a_X^{-1}(\Gamma)| \leq K |\Gamma|, |a_Y^{-1}(\Gamma)| \leq K |\Gamma| \).

Let \(P_F, P_E \) denote the orthogonal projections onto \(\overline{\text{span}}(F) \), \(\overline{\text{span}}(E) \) respectively. These projections can be realized in the following way:

\[
P_F f = \sum_{x \in X} (f_x, f_x) \tilde{f}_x \text{ for } f \in \mathcal{H} \text{ and } P_E f = \sum_{y \in Y} (f_y, e_y) \tilde{e}_y \text{ for } f \in \mathcal{H}.
\]

Therefore,

\[
|S_N(c_N)|(d_ym_Y - d_Xm_X) = \sum_{y \in \alpha_Y^{-1}(S_N(c_N))} \langle e_y, P_F e_y \rangle - \sum_{x \in \alpha_X^{-1}(S_N(c_N))} \langle P_E f_x, \tilde{f}_x \rangle
\]

\[
= \sum_{y \in \alpha_Y^{-1}(S_N(c_N))} \sum_{x \in X} (f_x, e_y) \langle \tilde{e}_y, \tilde{f}_x \rangle - \sum_{x \in \alpha_X^{-1}(S_N(c_N))} \sum_{y \in Y} (f_x, e_y) \langle \tilde{e}_y, \tilde{f}_x \rangle.
\]

We can rearrange the series as we like, since \(a_Y^{-1}(S_N(c_N)) \) and \(a_X^{-1}(S_N(c_N)) \) are finite sets and the infinite series over \(x \) or \(y \) converges absolutely by basic frame properties.

In particular, we rewrite the equation for \(N > N_\epsilon \) as

\[
|S_N(c_N)|(d_ym_Y - d_Xm_X) = \sum_{y \in \alpha_Y^{-1}(S_N(c_N))} \sum_{x \in X \setminus \alpha_X^{-1}(S_N(c_N))} (f_x, e_y) \langle \tilde{e}_y, \tilde{f}_x \rangle
\]

\[
- \sum_{x \in \alpha_X^{-1}(S_N(c_N))} \sum_{y \in Y \setminus \alpha_Y^{-1}(S_N(c_N))} (f_x, e_y) \langle \tilde{e}_y, \tilde{f}_x \rangle.
\]

We can go further, and rewrite the above equality as

\[
|S_N(c_N)|(d_ym_Y - d_Xm_X) = T_1 + T_2 - T_3 - T_4,
\]
where
\[T_1 = \sum_{y \in a_X^{-1}(S_N(c_N))} \sum_{x \in X \setminus a_X^{-1}(S_{N+N}(c_N))} \langle f_x, e_y \rangle \langle \hat{e}_y, \hat{f}_x \rangle \]
\[T_2 = \sum_{y \in a_X^{-1}(S_N(c_N))} \sum_{x \in a_X^{-1}(S_{N+N}(c_N)) \setminus a_X^{-1}(S_N(c_N))} \langle f_x, e_y \rangle \langle \hat{e}_y, \hat{f}_x \rangle \]
\[T_3 = \sum_{x \in a_X^{-1}(S_{N-N}(c_N))} \sum_{y \in Y \setminus a_Y^{-1}(S_N(c_N))} \langle f_x, e_y \rangle \langle \hat{e}_y, \hat{f}_x \rangle \]
\[T_4 = \sum_{x \in a_X^{-1}(S_N(c_N)) \setminus a_X^{-1}(S_{N-N}(c_N))} \sum_{y \in Y \setminus a_Y^{-1}(S_N(c_N))} \langle f_x, e_y \rangle \langle \hat{e}_y, \hat{f}_x \rangle. \]

We will estimate each of these quantities in turn.

Estimate T1: If \(y \in a_Y^{-1}(S_N(c_N)) \), then \(a_Y(y) \in S_N(c_N) \). So \(a_X^{-1}(S_N(c_N)) \subseteq a_X^{-1}(S_{N+N}(c_N)) \). Then by \(l^2 \) row decay, we have
\[|\langle f_x, e_y \rangle|^2 \leq \sum_{x \in X \setminus a_X^{-1}(S_{N+N}(c_N))} |\langle f_x, e_y \rangle|^2 \leq C. \]
Using this and the fact that \(\{|\hat{f}_x|\} \) is a frame sequence, we estimate that
\[|T_1| \leq \sum_{y \in a_Y^{-1}(S_N(c_N))} \left(\sum_{x \in X \setminus a_X^{-1}(S_{N+N}(c_N))} |\langle f_x, e_y \rangle|^2 \right)^{1/2} \left(\sum_{x \in X \setminus a_X^{-1}(S_{N+N}(c_N))} |\langle \hat{e}_y, \hat{f}_x \rangle|^2 \right)^{1/2} \]
\[\leq \sum_{y \in a_Y^{-1}(S_N(c_N))} e^{1/2} \left(\frac{1}{|Y|} |\hat{e}_y|^2 \right)^{1/2} \leq K|S_N(c_N)| \left(\frac{e}{|Y|} \right)^{1/2}. \]

Estimate T2: We have \(|a_X^{-1}(S_{N+N}(c_N)) \setminus a_X^{-1}(S_N(c_N))| \leq K(|S_{N+N}(c_N)| - |S_N(c_N)|). \) Since we have frame sequences \(\{|\hat{e}_y|\}_{y \in Y} \) and \(\{|e_y|\}_{y \in Y} \), we have
\[|T_2| \leq \sum_{x \in a_X^{-1}(S_{N+N}(c_N)) \setminus a_X^{-1}(S_N(c_N))} \left(\sum_{y \in Y} |\langle f_x, e_y \rangle|^2 \right)^{1/2} \left(\sum_{y \in Y} |\langle \hat{e}_y, \hat{f}_x \rangle|^2 \right)^{1/2} \]
\[\leq \sum_{x \in a_X^{-1}(S_{N+N}(c_N)) \setminus a_X^{-1}(S_N(c_N))} (B'||f_x||^2)^{1/2} \left(\frac{1}{|Y|} |\hat{f}_x|^2 \right)^{1/2} \]
\[\leq K(|S_{N+N}(c_N)| - |S_N(c_N)|) \left(\frac{B'B}{|A|} \right)^{1/2}. \]

Estimate T3: This estimate is similar to the one for \(T_1 \).
\[|T_3| \leq K|S_{N-N}(c_N)| \left(\frac{e}{|A|} \right)^{1/2}. \]

Estimate T4: This estimate is similar to the one for \(T_2 \).
\[|T_4| \leq K(|S_N(c_N)| - |S_{N-N}(c_N)|) \left(\frac{B'B}{|A|} \right)^{1/2}. \]

Final estimate: Applying the above estimates, we find that if \(N > N_e \), then
Proof. (a) Since the closed span of points is a subset of the frame, we have

\[|d_Y m_Y - d_X m_X| \leq \frac{|T_1| + |T_2| + |T_3| + |T_4|}{|S_N(c_N)|} \]

\[\leq K \frac{|S_N(c_N)|}{|S_N(c_N)|} \left(\frac{\epsilon}{AA'} \right)^{1/2} + K \frac{|S_{N+1}(c_N)| - |S_N(c_N)|}{|S_N(c_N)|} \left(\frac{B'B}{AA'} \right)^{1/2} \]

\[+ K \frac{|S_{N-1}(c_N)|}{|S_N(c_N)|} \left(\frac{\epsilon}{AA'} \right)^{1/2} + K \frac{|S_N(c_N)| - |S_{N-1}(c_N)|}{|S_N(c_N)|} \left(\frac{B'B}{AA'} \right)^{1/2}. \]

Since \(|S_N(j)| \) is independent of \(j \in G \), so we have \(\lim_{N \to \infty} \frac{|S_N(c_N)|}{N^d} = C \) for some constant \(C > 0 \). Thus

\(\lim_{N \to \infty} |d_Y m_Y - d_X m_X| = K \left(\frac{\epsilon}{AA'} \right)^{1/2} + 0 + K \left(\frac{\epsilon}{AA'} \right)^{1/2} + 0. \]

Since \(\epsilon \) was arbitrary, this implies \(\lim_{N \to \infty} (d_Y m_Y - d_X m_X) = 0 \) as required.

b) Since ultrafilter limits exist for any bounded sequence and furthermore are linear and respect products, we have

\[0 = p - \lim_{N \in \mathbb{N}} (d_Y m_Y - d_X m_X) \]

\[= \lim_{N \in \mathbb{N}} (p - \lim_{N \in \mathbb{N}} (d_Y m_Y)) - \lim_{N \in \mathbb{N}} (p - \lim_{N \in \mathbb{N}} (d_X m_X)) \]

\[= D(p, c; a_Y) M_F(\mathcal{E}, p, c) - D(p, c; a_X) M_E(\mathcal{F}, p, c). \]

Consequently, we have the following result:

Theorem 4.2. Let \(\mathcal{F} = \{ f_x \}_{x \in X} \) and \(\mathcal{E} = \{ e_y \}_{y \in Y} \) be frames for \(\mathcal{H} \), and let \(a_X : X \to G \) and \(a_Y : Y \to G \) be associated maps such that \(D^+(a_X) < \infty \) and \(D^+(a_Y) < \infty \). If \((\mathcal{F}, \mathcal{E}) \) has both \(l^2 \)-column and \(l^2 \)-row decay, then the following statements hold.

(a) For each free ultrafilter \(p \) and sequence \(c \), we have

\[D^-(a_Y) M^-(-\mathcal{E}) \leq D^-(a_X) M^+(\mathcal{F}) \leq D^+(a_Y) M^+(\mathcal{E}) \]

\[D^-(a_Y) M^-(-\mathcal{E}) \leq D^+(a_X) M^-(-\mathcal{F}) \leq D^+(a_Y) M^+(\mathcal{E}) \]

\[D^-(a_X) M^-(-\mathcal{F}) \leq D^-(a_Y) M^+(\mathcal{E}) \leq D^+(a_X) M^+(\mathcal{F}) \]

\[D^-(a_X) M^-(-\mathcal{F}) \leq D^+(a_Y) M^-(-\mathcal{E}) \leq D^+(a_X) M^+(\mathcal{F}) \]

(b) If \(M^+(\mathcal{E}) < \frac{D^+(a_X)}{D^+(a_Y)} \), then there exists an infinite set \(I \subset X \) such that \(\{ f_x \}_{x \in X \setminus I} \) is still a frame for \(\mathcal{H} \).

Proof. (a) Since the closed span of \(\mathcal{F} \) and \(\mathcal{E} \) is all of \(\mathcal{H} \), we have

\[D(p, c; a_Y) M(\mathcal{E}, p, c) = D(p, c; a_X) M(\mathcal{F}, p, c) \]

for all \(p \) and \(c \), by Theorem 4.1. By Lemma 2.5 found in [5], we have that there exist a free ultrafilter \(p \) and sequence \(c \) which satisfy \(D^-(a_X) = D(p, c; a_X) \). Hence

\[D^-(a_Y) M^-(-\mathcal{E}) \leq D(p, c; a_Y) M(\mathcal{E}, p, c) = D(p, c; a_X) M(\mathcal{F}, p, c) \leq D^-(a_X) M^+(\mathcal{F}). \]
Similarly, we have that there exist a free ultrafilter \(p' \) and sequence \(c' \) which satisfy \(M^+(\mathcal{F}) = M(\mathcal{E}, p, c) \). Hence

\[
D^-(a_X)M^+(\mathcal{F}) \leq D(p', c'; a_X)M(\mathcal{F}, p', c')
\]

\[
= D(p', c'; a_Y)M(\mathcal{E}, p', c') \leq D^+(a_Y)M^+(\mathcal{E}).
\]

Hence

\[
D^-(a_Y)M^-(\mathcal{E}) \leq D^-(a_X)M^+(\mathcal{F}) \leq D^+(a_Y)M^+(\mathcal{E}).
\]

The other inequalities follow similarly.

(b) Suppose \(M^+(\mathcal{E}) < \frac{D^+(a_X)}{D^-(a_Y)} \). By (a), \(D^+(a_X)M^-(\mathcal{F}) \leq D^+(a_Y)M^+(\mathcal{E}) \). So we have

\[
M^-(\mathcal{F}) \leq \frac{D^+(a_Y)M^+(\mathcal{E})}{D^+(a_X)} < \frac{D^+(a_Y)D^+(a_X)}{D^+(a_X)} = 1.
\]

Hence, by Proposition 2.21 from [5], we have that there exists an infinite set \(I \subset X \) such that \(\{f_x\}_{x \in X \setminus I} \) is still a frame for \(\mathcal{H} \).

Theorem 4.3. (BCHL ’05[4]) Let \(\mathcal{F} = \{f_x\}_{x \in X} \) be a frame sequence with frame bounds \(A, B \) and associated map \(a : X \to G \) such that

(a) \(0 < D^-(a) \leq D^+(a) < \infty \),

(b) \(M^+(\mathcal{F}) < 1 \), and

(c) \(\mathcal{F} \) is \(l^1 \) localized with respect to its dual.

Then if we fix \(\alpha \) such that \(M^+(\mathcal{F}) < \alpha < 1 \), for each \(0 < \epsilon < 1 - \alpha \) there exists a subset \(J \subset I_\alpha = \{x \in X : \langle f_x, \tilde{f}_x \rangle \leq \alpha \} \) such that \(D^-(J, a) = D^+(J, a) > 0 \) and \(\mathcal{F} \setminus \{f_x\}_{x \in J} \) is a frame for its closed linear span with frame bounds \(A(1 - \alpha - \epsilon), B \).

Using this theorem, we are able to prove a more general statement about the removal of subsets with positive density.

Theorem 4.4. Let \(\mathcal{F} = \{f_x\}_{x \in X} \) and \(\mathcal{E} = \{e_y\}_{y \in Y} \) be frames for \(\mathcal{H} \), with \(a_X : X \to G, a_Y : Y \to G \) the associated maps. Assume the following,

(a) \(0 < D^-(a_X) \leq D^+(a_X) < \infty \),

(b) \(0 < D^-(a_Y) \leq D^+(a_Y) < \infty \),

(c) \(M^+(\mathcal{E}) \leq \frac{D^+(a_X)}{D^-(a_Y)} \),

(d) \(\mathcal{F} \) is \(l^1 \) localized with respect to its dual,

(e) \((\mathcal{F}, \mathcal{E}) \) has both \(l^2 \) column and row decay.

Then \(M^+(\mathcal{F}) < 1 \). Furthermore, there exists a subset \(J \subset X \) with positive density such that \(\{f_x\}_{x \in X \setminus J} \) forms a frame for its closed linear span.

Proof. By Theorem 4.2, we have

\[
M^+(\mathcal{F}) \leq \frac{M^+(\mathcal{E})D^+(a_Y)}{D^-(a_X)} < 1.
\]

The result follows from applying Theorem 4.3.
Appendix A: Free Ultrafilters

In order to understand density and measure as defined in the next section, we will have to introduce the notion of free ultrafilters to define convergence for arbitrary sequences. Although we can define a free ultrafilter for any nonempty set, we only define it here for \mathbb{N}. We can understand a free ultrafilter as an element of $\beta\mathbb{N}/\mathbb{N}$ or equivalently, as the following definition.

Definition A.1. A collection p of subsets of \mathbb{N} is a filter if

(a) $\emptyset \notin p$,
(b) if $A, B \in p$ then $A \cap B \in p$,
(c) if $A \in p$ and $A \subseteq B \subseteq \mathbb{N}$ then $B \in p$.

A filter p is an ultrafilter if it is maximal in the sense that

(d) if p' is a filter on \mathbb{N} such that $p \subseteq p'$, then $p = p'$,
or equivalently,

(d') for any $A \subseteq \mathbb{N}$ either $A \in p$ or its complement, $\mathbb{N}\setminus A \in p$.

An ultrafilter is a free ultrafilter if

(e) p contains no finite sets.

Definition A.2. Let p be an ultrafilter. Then we say that a sequence $\{c_N\}_{N \in \mathbb{N}}$ in \mathbb{C} converges to $c \in \mathbb{C}$ with respect to p if for every $\epsilon > 0$ there exists a set $A \in p$ such that $|c_N - c| < \epsilon$ for all $N \in A$. In this case, we write

$$p \lim_{N \to \infty} c_N = c$$

We have the following results concerning convergence with respect to free ultrafilters:

Proposition A.3. Let p be a free ultrafilter, $\{c_N\}_{N \in \mathbb{N}}$ a sequence.

(a) If $\lim_{N \to \infty} c_N = c$, then $p \lim_{N \in \mathbb{N}} c_N = c$.

(b) Every bounded sequence converges with respect to p to an accumulation point of that sequence.

(c) If c is an accumulation point of a bounded sequence $\{c_N\}_{N \in \mathbb{N}}$ then there exists a free ultrafilter p such that $p \lim_{N \in \mathbb{N}} c_N = c$. In particular, there exists an ultrafilter p such that $p \lim_{N \in \mathbb{N}} c_N = \liminf\limits_{N \in \mathbb{N}} c_N$ and an ultrafilter q such that $q \lim_{N \in \mathbb{N}} c_N = \limsup\limits_{N \in \mathbb{N}} c_N$.

(d) p-limits are unique.

(e) p-limits are linear.

(f) p-limits respect products.

Example A.4. We show how p-limits extend the concept of ordinary convergence. Consider the sequence $\{c_N\}_{N \in \mathbb{N}}$ where

$$c_N = \begin{cases} 1 & \text{if } N \text{ is even;} \\ 0 & \text{if } N \text{ is odd.} \end{cases}$$

This sequence does not converge in the ordinary sense. However, let p be a free ultrafilter. By (d'), we have that either the set of all positive even numbers is in p,
or its complement, the set of all positive odd numbers is in p. If the first case is true, then $p - \lim_{N \in \mathbb{N}} c_N = 1$. If the second case is true, then $p - \lim_{N \in \mathbb{N}} c_N = 0$.

ACKNOWLEDGEMENT

The author is indebted to Akram Aldroubi for his wonderful support and many helpful and insightful discussions. The author would also like to thank Chris Heil, Pete Casazza, Radu Balan, Karheinz Gröchenig, and Massimo Fornasier for their feedback and conversations.

REFERENCES

Vanderbilt University, Department of Mathematics, Nashville, TN 37240 USA