Levels of Processing in Word Recognition and Subsequent Free Recall.

Johm M. Gardiner

Birkbeck College, University of London, London, England

The present experiment explored a situation in which Ss were unexpectedly required to recall the target words from a perceptual decision-making task. The targets were defined with respect either to their phonemic or semantic attributes, and Ss held these attributes in “working memory” for varying time intervals prior to target presentation. Semantically defined targets were better recalled subsequently than were phonemically defined targets, although the latter gave rise to longer decision latencies in the initial task. Also, subsequent target recall was not affected by the length of time the target-defining attributes had been held in working memory. These results were discussed within the context of Craik and Lockhart’s “levels-of-processing” approach.

Craik and Lockhart (1972) described a framework for memory research in which the memory trace is viewed essentially as the by-product of perceptual analyses. Central to their argument is the notion that the stability of the memory trace is a positive function of the type and depth of processing involved in the encoding of perceptual events. Greater depth of processing is defined in terms of the degree of cognitive involvement in carrying out stimulus analyses. Memory is assumed to be tied to a continuum of levels of processing which range, for example, from sensory analyses to the activation of associative semantic attributes.

As Craik and Lockhart (1972) suggested, this formulation implies that research should be directed toward determining the memorial consequences of various types of perceptual operations. Craik (in press, Experiments IV and V), for example, reported 2 studies in which S’s was given an initial perceptual decision-making task followed by an unexpected memory test. The purpose of the initial decision-making task was to lead S to encode different words at different levels of analysis. For each of a series of words presented briefly in a tachistoscope, S was asked a question such as (a) Is there a word present? (b) Does the word rhyme with ——? (c) Is the word a member of the following category? or (d) Does the word fit into the following sentence? In general, Craik’s results showed that “deeper” decisions about words gave rise both to longer decision latencies in the initial task, and to better memory performance subsequently.

These results are in good agreement with the levels-of-processing view. However, it could be argued that the differences obtained in memory performance were due to the corresponding differences in initial processing time, rather than due to increasing “depth” of analysis. Although words processed at “sentence level” were better remembered than words processed at “rhyme level,” for example, S also took longer in making sentence level decisions.

The general aim of the present experiment was to obtain further evidence in support of the levels-of-processing approach. Again, the strategy was to examine the effects of depth of analysis in a perceptual decision-making task upon subsequent memory for “target” words. The present study was also designed to provide more information on the effects of initial processing time in such a situation. In this context, it is important to note that processing time refers, poten-
Design. The experiment was conducted using a mixed design. Level of processing (phonemic or semantic) was the between-Ss variable, called here for convenience "attribute type." Sixteen Ss were assigned at random to each between-Ss condition. Within Ss, the design comprised a factorial combination involving 2 levels of "attribute number" and 4 levels of "attribute lag." Attribute number refers to target-word definition by either 1 or 2 phonemes, on the one hand, or by a single or nested category name, on the other hand. Attribute lag refers to the position of the target within each word set.

The Ss were presented with 38 word sets in the target-recognition session. Prior to the presentation of the first word set, the target for that set was defined either as a member of a single or nested category for 5s in the semantic condition, or by the word containing either 1 or 2 phonemes, or in the phonemic condition. The target word was always the final word in the set. On any given trial, it was preceded by 1-6 non-target words. The critical positions of the target for scoring purposes were 3, 4, 5, and 6. Positions 2 and 7 were included to reduce target predictability by position; of the 38 trials were of this kind. The remaining 32 target words appeared equally often at each of the 4 critical positions and were defined equally often by either 1 or 2 attributes in each between-Ss condition. For presentation purposes, the total number of word sets was divided into 4 blocks which were counterbalanced with regard to presentation order and the level of attribute number. In effect, all Ss received the same target words, and no target word was differentially valued with respect to order of presentation or experimental condition.

Approximately 2 min. after the final trial in the recognition session, Ss were unexpectedly asked to write down all the target words they could remember.

The experiment had, therefore, the following 2 main objectives: (a) to compare recall performance following either phonemic or semantic processing of target words, and (b) to examine the relationship between initial processing times and subsequent recall.

Method

Subjects. The Ss were 32 volunteers, mostly undergraduate students, who were either paid for their services or were fulfilling a course requirement. The Ss were tested individually.

The word lists were typed in for presentation via an IBM 7094 and a closed-circuit television set Laboratory Timer and Signal Ss both trigger the presentation of also to start, simultaneously, a stopclock. The Birkbeck Labor Signal Source was operated manually upon S's having responded correctly. In practice, it appeared at about a 2-sec. rate.

The S's vocal response, amplified microphone, stopped the Vennus was instructed to respond yes or as rapidly but as accurately as possible. Ss were instructed that after they were to report the target decision latency measure, however, from the onset of the target word.

The Ss were initially familiar with the apparatus and procedure. They instructed as to the nature of materials. Prior to the experiment received 6 practice trials in which appeared once at each possible. Each trial began with the reading of the baseline. For example, the case where the poland. If the target was defined E said either "the target contain the is a country," for: and semantic conditions, respectively: target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set meteor, attic, Poland, and target was defined by 2 attributes: the target contains the sounds 'the target is a European country' and their 2-attribute definitions were: leg animal: /p/ and /d/, or a mile /b/ or a city: /b/ and /n/, or a car /k/ or a disease; /k/ and /l/, temple: /n/, or a building; /m/ gious building. Following target word in the set was presented, or Examples of 2 presentation set
The word lists were typed in uppercase letters for presentation via an IBM electric typewriter and a closed-circuit television system. A Birkbeck Laboratory Timer and Signal Source was used to both trigger the presentation of each word and also to start, simultaneously, a Venner millisecond stopclock. The Birkbeck Laboratory Timer and Signal Source was operated manually by E, contingent upon Ss having responded to the word currently presented. In practice, words within a set appeared at about a 2-sec. rate.

The S's vocal response, amplified from a throat microphone, stopped the Venner timer. Each S was instructed to respond verbally to each word as rapidly but as accurately as he could. In addition, Ss were instructed that after each correct response they were to report the target word aloud. The decision latency measure, however, was of course from the onset of the target word to S's verbal report. The Ss were initially familiarized with the apparatus and procedure. They were also fully instructed as to the nature of the stimulus materials. Prior to the experimental trials, each S received 6 practice trials in which the target word appeared once at each possible target position. Each trial began with E reading aloud the target-defining attributes for the word set. Consider, for example, the case where the target word was "POLE." If the target was defined by one attribute, E said either "the target contains the sound /p/", or "the target is a country," for Ss in the phonemic and semantic conditions, respectively. Where the target was defined by 2 attributes, E said either "the target contains the sounds /b/ and /l/", or "the target is a European country." Examples of other target words and their corresponding 1- or 2-attribute definitions were: "LEOPARD: /p/ or an animal; /b/ or a wild animal; DUBLIN: /b/ or a city; /b/ and /l/ or a capital city; RACKETS: /k/ or a disease; /k/ and /t/ or a bone disease; TEMPLE: /m/ or a building; /m/ and /l/ or a religious building." Following target definition, each word in the set was presented, one word at a time. Examples of 2 presentation sets were: FATHOM, METER, ATTIC, POLAND, and FATHOM, JAPAN, ATTIC, POLAND. The latter example includes one distractor which contains 1 of the 2 target-defining phonemes and belongs to the main but not to the nested category: sets including one or more such distractors were presented when the target was defined by 2 attributes. Each trial terminated after S had correctly identified and named the target; the next trial began immediately.

The Ss were told that the point of the experiment was to investigate the effects of defining target words by 1 or 2 "values along a dimension" on the speed with which they could identify the target. No S reported subsequently that he had anticipated having to recall the target words.

Unknown to Ss, only decision latency in response to target words was recorded. Errors made by S in the target-recognition version were noted and "corrected" orally by E at the time of their occurrence.

The results are shown in Figure 1.

Consideration is given first to the latency data. The basic datum was median reaction time for correct responses from the 8 trials each S received in the 2 X 2 X 2 combination representing attribute type (phonemic or semantic), attribute number (1 or 2), and attribute lag (short or long). The mean median scores are shown in the left-hand panel of the figure; each point is based on approximately 120 observations. These data were subjected to analysis of variance. The main effects due to attribute type, F (1, 30) = 14.9, attribute number, F (1, 30) = 43.5, and attribute lag, F (1, 30) = 8.8, were all significant at or beyond .01. The only significant interactions were the following: Attribute Type X Number, F (1, 30) = 12.3, p < .01, and Attribute Type X Lag, F (1, 30) = 4.4, p < .05.

No detailed interpretation of these results will be attempted. From the point of view of the subsequent argument, the most relevant feature in these data is that Ss took considerably longer to process target words at the phonemic level than they did when targets were defined semantically. This result might seem surprising in view of Shulman's (1970) finding that, in a probe-recognition task, homonyms were recognized more rapidly than synonyms. However, it should be noted that whereas synonyms can be identified on a "holistic" basis, target words in the present paradigm were identified on the basis of individual, constituent phonemes.

The right-hand panel in Figure 1 shows the percentage of target words which Ss
recalled in the final test, with the lag variable again collapsed into short and long lag. In order to obtain "workable" numbers for the purposes of analysis, the recall data supplied by each consecutively tested pair of Ss were combined to form 8 macro-Ss in each between-Ss condition. An analysis of variance carried out on the macro-S recall scores confirmed that the main effect due to attribute type was highly significant, \(F (1, 14) = 73.2, p < .001 \). The main effect due to attribute number was also significant, \(F (1, 14) = 7.2, p < .05 \), but the main effect due to attribute lag was not \((F < 1) \). The only significant interaction was Attribute Type \(\times \) Number, \(F (1, 14) = 5.7, p < .05 \).

Not surprisingly, these results confirm that target words were recalled much better following semantic processing, as compared with phonemic processing, in the initial session. Recall of targets following phonemic processing is virtually at floor level. The results also indicate that the number of phonemes involved in processing the target had no effect upon recall performance. This finding contrasts with the comparable result in the semantic condition, where recall is better following target definition by a nested category than by a single category name.

Finally, it is apparent that the length of time the target-defining attributes were held in working memory (short or long attribute lag) did not affect subsequent recall of the target word. Neither the main effect due to attribute lag nor any interaction term involving lag approached significance.

DISCUSSION

These results have several implications for the levels-of-processing approach discussed earlier. First, it is clear that processing target words at a semantic level led to good subsequent recall of the targets, whereas targets processed at a phonemic level were very poorly recalled. Similar differences in memory performance following semantic as opposed to structural processing have been reported by Craik (1973), Hyde and Jenkins (1969), and Schulman (1970). Such findings are in good agreement with the levels-of-processing view.

Although further analysis at a semantic level resulted in a corresponding improvement in recall (nested vs. single category names), additional analysis at a phonemic level did not benefit recall. Thus, as Craik (1973) pointed out, the persistence of the memory trace should not be conceived to be simply a function of the number of analyses performed on the stimulus, but rather, a function of the degree of meaningfulness extracted from it.
LEVELS OF PROCESSING IN WORD RECOGNITION AND RECALL

The markedly poor recall of target words that had been processed at a phonemic level was associated with much longer decision latencies for these targets in the orienting task. Clearly, the pattern of results obtained in the recall test cannot be attributed to corresponding differences in the processing time for target words. It should be noted that following target-word recognition, Ss were required to report the target word aloud. This procedure ensured that all target words were processed to at least a "nominal" level. The poor recall of phonemically defined targets must reflect the manner in which the words were processed, rather than the possibility that the target word as a whole was never perceived.

It was also found that the length of time the target-defining attributes were held in working memory did not affect subsequent recall of the target words. This finding relates well to Craik and Lockhart's (1972) suggestion that maintaining information at a "fixed" level of processing does not necessarily lead to any improvement in the memory trace. More generally, the present data demonstrate that duration at encoding is not nearly so crucial for registration in memory as are the levels of analysis involved. No evidence was found to support the notion that processing time, whether for target words or for target-defining attributes, was a critical factor for subsequent recall performance. The results imply that processing time may only be important insofar as it permits further or deeper levels of analysis to be carried out.

In summary, the present study explored a situation in which S was unexpectedly required to recall the target words he had identified in a perceptual decision-making task. The main findings were, first, recall of the target words was better following semantic analysis as opposed to phonemic analysis of the target. Second, whereas further analyses at a semantic level led to a further improvement in recall, additional analyses at a phonemic level did not benefit recall. Third, neither processing time nor the length of time for which the target-defining attributes were held in working memory, appeared to be critical factors in determining subsequent recall performance. These results provide further support for the levels-of-processing view (Craik & Lockhart, 1972). It was concluded that the memorial consequences of the operations carried out in the perceptual decision-making task were attributable solely to the level of analysis these operations involved.

REFERENCES

(Received April 9, 1973)