Sebesta

15.1 Introduction

15.2 Mathematical Functions


       λ (x) x * x * x

   for the function  cube (x) = x * x * x

Lambda expressions describe nameless  functions

Lambda expressions are applied to parameter(s) by placing the parameter(s) after the expression

     e.g.   (λ(x) x * x * x)(3)     which evaluates to 27
 

Functional Forms

  Def: A higher-order function, or functional form,is one that either takes functions as parameters or yields a function as its result, or both

1.  Function Composition

A functional form that takes two functions as  parameters and yields a function whose result  is a function whose value is the first actual parameter function applied to the result of the application of the second


       Form:  h =  f ° g
        which means h (x) =    f ( g ( x))

2. Construction

A functional form that takes a list of functions as  parameters and yields a list of the results of applying each of its parameter functions to a  given parameter
      Form: [f, g]
       For f (x) = x * x * x  and  g (x) = x + 3,     [f, g] (4)  yields  (64, 7)

 3. Apply-to-all
A functional form that takes a single function as a parameter and yields a list of values obtained   by applying the given function to each element of a list of parameters

      Form: λ
      For h (x) =  x * x * x
      λ( h, (3, 2, 4))  yields  (27, 8, 64)

15.3 Fundamentals of Functional Programming Languages
 

15.4 LISP

Data object types: originally only atoms and lists
List form: parenthesized collections of sublists and/or atoms
      e.g.,    (A B (C D) E)
Originally, LISP was a typeless language

LISP lists are stored internally as single-linked lists

15.5 Intro to Scheme Primitive Functions Lambda Expressions

Form is based on  λ  notation

e.g.,   (LAMBDA (L) (CAR (CAR L)))
A Function for Constructing Functions   DEFINE - Two forms:
 1.  To bind a symbol to an expression
e.g.,    (DEFINE pi 3.141593)
(DEFINE two_pi (* 2 pi))
2. To bind names to lambda expressions
e.g.,   (DEFINE (cube x) (* x x x))
Example use:  (cube 4)
Evaluation process (for normal functions):
1. Parameters are evaluated, in no particularorder
2. The values of the parameters are  substituted into the function body
3. The function body is evaluated
4. The value of the last expression in the body is the value of the function
        (Special forms use a different evaluation process)
Examples:
(DEFINE (square x) (* x x))
(DEFINE (hypotenuse side1 side1) (SQRT (+ (square side1) (square side2))))
Predicate Functions: (#T and () are true and false)
1. EQ? takes two symbolic parameters; it returns #T if both parameters are atoms and the two are the same
  e.g., (EQ? 'A 'A) yields #T
           (EQ? 'A '(A B)) yields ()
 Note that if EQ? is called with list parameters, the result is not reliable
 Also, EQ? does not work for numeric atoms
2. LIST? takes one parameter; it returns #T if the  parameter is an list; otherwise ()
3. NULL? takes one parameter; it returns #T if the parameter is the empty list; otherwise ()
 Note that NULL? returns #T if the parameter is ()
4. Numeric Predicate Functions
      =, <>, >, <, >=, <=, EVEN?, ODD?, ZERO?,  NEGATIVE?
Output Utility Functions:
(DISPLAY expression)
(NEWLINE)
Control Flow
1. Selection- the special form, IF
(IF predicate then_exp else_exp)
e.g.,  (IF (<> count 0) (/ sum count)  0)
2. Multiple Selection - the special form, COND
General form:
    (COND
       (predicate_1  expr {expr})
       (predicate_1  expr {expr})

       (predicate_1  expr {expr})
(ELSE expr {expr}))

Returns the value of the last expr in the first  pair whose predicate evaluates to true
Example of COND:
  (DEFINE (compare x y)
   (COND
     ((> x y) (DISPLAY “x is greater than y”))
     ((< x y) (DISPLAY “y is greater than x”))
     (ELSE (DISPLAY “x and y are equal”))))
 

Example Scheme Functions:

 1. member - takes an atom and a list; returns #T if  the atom is in the list; () otherwise
       (DEFINE (member atm lis)
         (COND
           ((NULL? lis) '())
           ((EQ? atm (CAR lis)) #T)
           ((ELSE (member atm (CDR lis))) ))
 

2. equalsimp - takes two simple lists as parameters; returns #T if the two simple lists are equal; ()  otherwise
  (DEFINE (equalsimp lis1 lis2)
    (COND
      ((NULL? lis1) (NULL? lis2))
      ((NULL? lis2) '())
      ((EQ? (CAR lis1) (CAR lis2))
           (equalsimp (CDR lis1) (CDR lis2)))
      (ELSE '())))

3. equal - takes two lists as parameters; returns  #T if the two general lists are equal;  () otherwise
     (DEFINE (equal lis1 lis2)
       (COND
         ((NOT (LIST? lis1)) (EQ? lis1 lis2))
         ((NOT (LIST? lis2)) '())
         ((NULL? lis1) (NULL? lis2))
         ((NULL? lis2) '())
         ((equal (CAR lis1) (CAR lis2))
              (equal (CDR lis1) (CDR lis2)))
         (ELSE '()) ))

4. append - takes two lists as parameters; returns the first parameter list with the elements of the  second parameter list appended at the end

  (DEFINE (append lis1 lis2)
     (COND
       ((NULL? lis1) lis2)
       (ELSE (CONS (CAR lis1)
             (append (CDR lis1) lis2)))))

The LET function

General form:
(LET (
 (name_1 expression_1)
 (name_2 expression_2)
 ...
 (name_n expression_n))
 body
)

Semantics: Evaluate all expressions, then bind the values to the names; evaluate the body

(DEFINE (quadratic_roots a b c)
  (LET (
    (root_part_over_2a
          (/ (SQRT (- (* b b) (* 4 a c)))
             (* 2 a)))
    (minus_b_over_2a (/ (- 0 b) (* 2 a)))

  (DISPLAY (+ minus_b_over_2a
              root_part_over_2a))
  (NEWLINE)
  (DISPLAY (- minus_b_over_2a
              root_part_over_2a))))

Functional Forms

1. Composition
     The previous examples have used it

 2. Apply to All - one form in Scheme is mapcar
      Applies the given function to all elements of  the given list; result is a list of the results
 
  (DEFINE (mapcar fun lis)
    (COND
      ((NULL? lis) '())
      (ELSE (CONS (fun (CAR lis))
                     (mapcar fun (CDR lis))))))

It is possible in Scheme to define a function that builds Scheme code and requests its interpretation
This is possible because the interpreter is a  user-available function, EVAL

      e.g., suppose we have a list of numbers that must be added together

        ((DEFINE (adder lis)
         (COND
           ((NULL? lis) 0)
           (ELSE (EVAL (CONS '+ lis)))
       ))

The parameter is a list of numbers to be added; adder inserts a + operator and interprets the resulting list.

Scheme includes some imperative  features:
   1. SET! binds or rebinds a value to a name
   2. SET-CAR! replaces the car of a list
   3. SET-CDR! replaces the cdr part of a list

15.6 COMMON LISP
- A combination of many of the features of the  popular dialects of LISP around in the early 1980s

- A large and complex language--the opposite of  Scheme

- Includes:
   - records
   - arrays
   - complex numbers
   - character strings
   - powerful i/o capabilities
   - packages with access control
   - imperative features like those of Scheme
   - iterative control statements

- Example (iterative set membership, member)

   (DEFUN iterative_member (atm lst)
     (PROG ()
       loop_1
         (COND
           ((NULL lst) (RETURN NIL))
           ((EQUAL atm (CAR lst)) (RETURN T))
         )
       (SETQ lst (CDR lst))
       (GO loop_1)
   ))

15.7 ML
A static-scoped functional language with syntax that is closer to Pascal than to LISP

Uses type declarations, but also does type   inferencing to determine the types of undeclared variables (See Chapter 4)

It is strongly typed (whereas Scheme is  essentially typeless) and has no type coercions

Includes exception handling and a module facility for implementing abstract data types

Includes lists and list operations

The val statement binds a name to a value
    (similar to DEFINE in Scheme)

Function declaration form:
   fun function_name (formal_parameters) =
            function_body_expression;

   e.g.,  fun cube (x : int) = x * x * x;

Functions that use arithmetic or relational  operators cannot be polymorphic--those with only list operations can be polymorphic
 

15.8 Haskell
Similar to ML (syntax, static scoped, strongly
   typed, type inferencing)
Different from ML (and most other functional languages) in that it is PURELY functional (e.g., no variables, no assignment statements,  and no side effects of any kind)

Most Important Features

Applications of Functional Languages: