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Abstract
The famous Turing Test poses the question of whether a computer
can fool people into believing it is human via a text conversation. In
contrast, the BotPrize competition posed the question of whether a
computer playing a First-Person Shooter video game (Unreal Tour-
nament 2004) could convince other players it was human. The com-
petition ran for 5 years before the question was answered in the af-
firmative: The bot that tricked players into thinking it was human
over 50% the time is presented, and now you have the chance to see
if you can distinguish between the human and the bot.

1 BotPrize
• An international competition started in 2008:
http://botprize.org/.

• A Turing Test for game bots: goal is to see if a game bot can
convince humans that it is human.

• 3D First-Person Shooter Unreal Tournament 2004 used as test
domain.

Opponents preparing for combat in Unreal Tournament

• Human players (and bots) have access to judging gun used to
tag opponents as human or bot.

• Bot with the highest percentage of human tags after several
matches wins the competition.

• Grand prize is only won by bot that is tagged as human over
50% of the time.

• Grand prize was won for the first time in 2012 by bot named
UTˆ2 [2, 3], for University of Texas in Unreal Tournament.

2 Bot Design

• UTˆ2 used a modular architecture similar to a behavior tree,
so that high-level behaviors could be easily prioritized.

• Navigation was based on a mixture of A* search and replay of
human traces.

• Combat behavior was learned using multiobjective neuroevo-
lution.

• Because bots had access to the judging gun, UTˆ2 pretends to
play the judging game.

• Behaviors were constrained to prevent super-human levels of
performance.

3 Bot Architecture
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Modules on the left are listed in decreasing priority order. If the trigger for a module fires, then the appropriate controller in the middle column
activates. Each controller has access to some set of simple actions listed on the right.

4 Evolved Combat Behavior
• Battle Controller selects movement actions according to an

evolved neural network.

• Many sensors were used: range finders for walls, pie-slice
sensors for opponents, etc.

• Movement actions are ego-centric, but also opponent-relative
(e.g. approach opponent, strafe left around opponent, etc.) in
order to encourage the bot to focus on one opponent.
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• Movement actions are further constrained based on sur-
roundings, e.g. the bot will not back away into a wall.

• Evolutionary algorithm used is a combination of Neuro-
Evolution of Augmenting Topologies (NEAT [4]) and Non-
dominated Sorting Genetic Algorithm II (NSGA-II [1]).

• Multiple objectives: maximize damage dealt, minimize dam-
age received, and minimize wall collisions.

• Controller constrained to pick an appropriate weapon based
on distance from opponent.

• Shooting accuracy of bot depends on movement speed and
distance from target, thus discouraging evolution of inhuman
aiming skill.

hack to offset box

5 Replay of Human Traces
• Human traces for specific levels can be replayed to get un-

stuck or explore levels.

• Database of traces collected from both standard matches, and
when exploring levels without opponents present.

Human traces for a single level.

• Traces in the presence of opponents are filtered out of
database.

• Traces indexed by nearest navpoint and stored in KD-Trees.

• If a trace runs out, or fails to replay properly, then another is
selected.

• Navigation with A* search used when no trace is available.

5 Replay of Human Traces (continued)

• Use of human traces results in the bot getting stuck less often.
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Using human traces for exploration, to get unstuck, or for both means the
bot gets and stays stuck less often.

6 Final Results
The BotPrize competition ran for five consecutive years with the
gap between humans and bots gradually closing. In the 2012 com-
petition, two bots won the grand prize with humanness ratings
above 50%: MirrorBot and UTˆ2.

MirrorBot 52.2%
UTˆ2 51.9%
ICE-CIG2012 36.0%
NeuroBot 26.1%
GladiatorBot 21.7%
AMISBot 16.0%

Note that although MirrorBot achieved a slightly higher human-
ness rating, UTˆ2’s rating was based on slightly more judgments
(27 for UTˆ2 vs. 23 for MirrorBot). In any case, both are far be-
yond the next highest rating of 36.0%.

7 More Information
• Download UTˆ2: http://nn.cs.utexas.edu/?ut2

• Videos: http://nn.cs.utexas.edu/?botprize2012
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