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Abstract

The purpose of this project is to model multi-species interactions using Volterra-Lotka equations in both
two and three dimensions. Changes in population dynamics that arise as a result of modifying parameters
are examined. The population dynamics of the resulting systems are analyzed in terms of stability around
equilibrium points and within invariant surfaces. Of particular interest is periodic behavior and the initial
conditions that lead to it. The two-dimensional system is found to exhibit stable periodic behavior for all
initial conditions where neither population count is zero. The behavior of the three-dimensional system
varies depending on the choice of constants used in the system definition. One case results in stable periodic
behavior for all non-zero initial conditions, one case leads to the extinction of the top level predator and
periodic stability for the remaining species, and the third case leads to unbounded growth for the bottom
level prey and top level predator populations, and increasingly wild fluctuations in the population of the
intermediate predator/prey population. The merits and flaws of these models are also discussed.



Introduction

This paper recreates much of the analysis and conclusions produced in “A Lotka-Volterra Three-species Food
Chain” [2], and also incorporates knowledge from a course in both linear and non-linear dynamics taken in
Germany called “Gewohnliche Differentialgleichungen” [6] (Ordinary Differential Equations). It starts by
presenting the basic exponential growth 2D Volterra-Lotka system of differential equations and analyzing it
in terms of the stability of stationary points. This system is then extended into a 3D system and a similar
analysis is carried out. Also important to the analysis of the 3D system are invariant surfaces, which are
explained below.

The mathematical notation used to present some of the theorems and definitions below may by unfamiliar
to some, so the following table of symbol definitions is provided:

Mathematical Symbol | Meaning

& The derivative of the function z with respect to time ¢, or a—f

clu,v) The set of all continuous functions from a set U to a set V whose
derivatives exist and are continuous in U.

R The set of all real-numbers.

Re The real part function, which returns the real number
component of a complex number.

o(A) The spectrum of the matrix A, which is the set of all Eigenvalues of A.

V(L) Gradient of the vector function F' evaluated at the point Z.

AC The set A is a subset of B, possibly equal

Meanings of several mathematical symbols used in the paper.

This paper assumes some familiarity with differential equations. Volterra-Lotka equations are coupled
first-order ordinary differential equations. It is impossible to solve these equations explicitly in terms of an
independent variable, which is why an analysis of the stability of the system is so important.

In order to discuss the concept of stability, we first define flow. Flow is a way of representing the solutions
to a differential equation for all possible times and initial conditions. The concept of flow is useful in that
we can use it even if we do not know the solution to a differential equation.

Definition 1 (Flow [3, 6]) Let there be a differential equation & = F(&) where F € C*(U,R") for U C R".
Define J (%) to be the mazimal existence interval for an initial condition Z(0) = Zy of the differential
equation. Then we define the flow ¢ as follows:

© {(t,f()) | CZ"O eU,t e j(f@)} —-U
Such that (0, %) = Zo and p(t, 7o) = E(t) for T(0) = Zy. By convention ¢(t,To) = p'(To).

For fixed ¢ and T, the value of ¢!(Z) is a single point. If we let ¢ flow through all values in J (%), then
the result is a set {p!(Zo) | t € J(Zo)}, which we call a trajectory. A trajectory represents all points in the
graph of a single solution to the differential equation. Geometrically, it represents the curve along which a
solution flows as time changes. These trajectories are unique for each solution to the differential equation.
Furthermore, different trajectories cannot intersect each other.

Trajectories are plotted within the phase space of a differential equation. This space depicts the path
of one or more trajectories over time. Special points for which ¢f(Zy) = &, for all ¢ are called fixed points,
stationary points or equilibrium solutions. They appear as single points within phase space. These points
play an important role in defining the stability of a system of differential equations.



Definition 2 (Stability [6]) Let p be a fized point of a differential equation with flow .

1. p'is stable < For every neighborhood U of p, there exists a neighborhood V of ¢ such that
O'U)CV forallt >0
2. p is asymptotically stable < p is stable and there exists a neighborhood W of p such that
tlg& ON&) =p for all T €W

3. p is unstable < P’ is not stable.

Geometrically, a point is stable if all the trajectories around it stay within an area around it. This could
mean that the trajectories keep moving along a closed path whose values repeat. This is called a periodic
solution. A point could also be stable if the trajectories around it approach ever closer to a closed path
around the point. Such a closed path is called a limit cycle, but is not particularly important to our analysis.
A point is asymptotically stable of all trajectories in a neighborhood around the point approach the point.
Our terminology is very important in this case, because we mentioned above that different trajectories do
not intersect. This means that although all trajectories around an asymptotically stable point approach that
point, they never actually reach that point. Therefore none of these trajectories intersect with each other,
nor with the fixed point itself.

Armed with this knowledge, we now proceed to analyzing the two-dimensional Volterra-Lotka system.
In the course of this analysis, theorems and definitions helpful to our analysis shall be stated. We will also
make use of several diagrams, particularly those of the phase space for the system. All diagrams featured
below were generated using Maple 9. The code for these diagrams is presented in an appendix at the end of
this document.

2D Volterra-Lotka System

Volterra-Lotka equations are differential equations that can be used to model predator-prey interactions. The
original system discovered by both Volterra and Lotka independently [1, pg. 504] consisted of two entities.
Vito Volterra developed these equations in order to model a situation where one type of fish is the prey for
another type of fish. The model was simplified by the following assumptions:

1. The prey population increases exponentially in the absence of predators.
2. The predator population decreases exponentially in the absence of prey.

3. The prey population decreases relative to the frequency with which predators meet prey as a result of
predation.

4. The predator population increases relative to the frequency with which predators meet prey as a result
of predation.

Using these assumptions, the Volterra-Lotka equations for the two-dimensional predator-prey system
with exponential growth is defined by the following system of differential equations:

F(a:(t),y(t)):{ & = Ax—Bzxzy = xz(A-— By)

y = —Cy+Dwy — y(—C+ D) (1)

In the above equations, x represents the size of the prey population and y represents the size of the
predator population. The growth rate of each of these populations is defined in terms of z and y, both of
which are functions of the time ¢, which is not present in the equations. The values A, B, C and D are
positive constants. The Ax term models assumption #1, the —Cy term models assumption #2, the —Bzy
term models assumption #3 and the Dxy term models assumption #4.



The assumptions made above describe a closed system in which the two given species are only affected by
each other. There are no outside factors that can influence the system, such as another species or features of
the environment. The exponential growth of the prey population in the absence of predation is an unrealistic
assumption, but provides for a tractable model. Should one wish, one can extend the system to one with
logistic growth [5].

The stationary points of the exponential growth system are (z,y) = (0,0), (C/D, A/B). The stationary
point (0, 0) is uninteresting because there are no organisms to observe in such a system. However, the second
stationary point is of interest. We want to discover the dynamics of the system, which involves determining
whether or not the stationary points are stable, or perhaps even asymptotically stable.

One means of determining the stability of stationary points is to linearize the system (by taking partial
derivatives) and determine the stability of points in the linear system. The stability of points in a linear
system can be determined by finding the Eigenvalues of the matrix for the linear system at those points and
applying the following theorem:

—

Theorem 1 (Principle of Linearized Stability [6]) Let I’ € CYHU,R™) for U C R™ with F(po) = 0.
Then for the non-linear system d = F(d) the following is true:

1. Re(oc(VF(p)))) < 0= py is asymptotically stable
2. po is stable = Re(o(VF(py))) <0

The linearized 2D Volterra-Lotka system is shown below.

cren (A58 _5,)

Plugging in the first stationary point (0, 0) produces the matrix below, which has Eigenvalues A and —C,
for A > 0 and C > 0. Therefore the matrix has a positive Eigenvalue A, meaning that the system is unstable
at the point (0,0). This is not surprising given assumption #1, which states that the prey population
increases in the absence of predators.

VF(0,0) = ( ‘3 _OC ) (3)

Plugging in the second stationary point (C/D, A/B) produces the following matrix, whose Eigenvalues
are +iv AC, which are complex numbers. Because the real part of these values is zero, the point could be
either stable or instable. Another method of analysis is needed to find out more.

VF(C/D,A/B):( 0 —BO/D>

DA/B 0 (4)
A type of function that could be of help, should it exist, is an Integral. An Integral is defined as follows

Definition 3 (Integral [6]) Given a system @ = F(a@) where F € CY(U,R™), a function G € C*(U,R) is
called an Integral of F provided:

1. G(a(t)) = G(d0)) vt,d
2. VG(d) £ 0 on open sets

A global Integral is one for which U is equal to the entire area of interest within R”, which in the case
of the 2D Volterra-Lotka system is {(z,y) € ®? | z > 0, y > 0}. For any system, finding n — 1 linearly
independent Integrals is equivalent to finding an implicit solution to the system. In the case of the 2D
System, only one Integral needs to be found. A function G satisfying condition #1 of the definition of an
Integral is found by setting the derivative of G with respect to time equal to zero. To further simplify the
search, we will make the separation assumption, which means that we assume G is the sum of two separate
functions of x and y.

G(z,y) = f(x) + g(y) such that G =0 (5)



This assumption is not guaranteed to hold, but if it does, we will be able to find an Integral for the
system. Such a function is found as follows:

: oG . oG . o .
G = a + a—yy =0 {Multivariable Chain Rule}
oG oG o
0 = a—x(A — By) + ?y(—C + Dz) {Definition of Volterra-Lotka System}
4 )
0 = f'(v)z(A—- By)+ ¢ (y)y(—C + Dz) {Separation Assumption}
9 Wy(C—Dz) = f(x)z(A- By)

Should (z,y) = (C/D, A/B), then both sides of the equation are zero and the equation is true for all f
and g, but to find a solution that works in all cases we will assume that this is not the case, and thus avoid
dividing by zero.

gy ()
A_By - C — Dz for (I7y) 7£ (C/DaA/B)

Given that the left and right hand sides are functions of different variables, this implies that both sides
are equal to the same constant value. According to #2 in the definition of an Integral, the gradient cannot
equal zero, and this will be the case as long as the constant to which both sides of the equation are equal is
not 0. We choose it to be 1, though other values would also work (Integrals are not unique).

, A-By A C—-Dz C
gy)=———= =

——-B A f(x) =—-D
9(y) = [d(y)dy = Alnly| = By+ K1 A f(z)= [ f'(x)de = Clnlz| - Dz + K

Yy Yy T T

Where K; and K, are constants of integration. Combining these into one constant K results in the
following definition for G

This is an Integral because VG(x,y) = (C/x — D, A/y — B) # 0. The other requirement of an Integral is
satisfied by construction. It is worth noting that the same Integral could be derived using other simplifying
assumptions besides the separation assumption. Having the derivative of G with respect to t identical to 0
means that solutions to the system of differential equations run along level planes of the function G. This
can be seen by comparing the the graphs of G, the contours of G and the phase space portrait of the 2D
Volterra-Lotka system, all of which are shown below for A= B =C=D =1.

Figure 1: 3D graph of G(z,y) = Cln|z| — Dz + Aln|y| — Byfor A=B=C=D = 1.
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Figures 2 and 3: On the left is the phase space portrait of the Volterra-Lotka system for initial
conditions (z(0),y(0)) = (0.25,0.25), (0.5,0.5), (0.75,0.75), listed in order from outermost trajectory to
innermost trajectory, with stable fixed point (1,1). On the right is a plot of the contours of G(x,y). Every
contour of G(z,y) is also a trajectory within the phase space of the system, and vice-versa.

Because the solutions to the system of differential equations run along level planes of the global Integral G,
this implies that all solutions are stable with respect to the extrema of G. The maximum value of G is the
fixed point (C'/D, A/B) of the system. Therefore this point is stable, but not asymptotically stable. This
results in periodic behavior for all solutions not starting at either a fixed point or along one of the axes.

This behavior can be seen by plotting both x and y against time t. However, since x and y cannot be solved
in terms of t, numerical methods must be used to plot x and y. Below is a plot made using the Runge-Kutta
method as described in “Elementary Differential Equations and Boundary Value Problems” [1, pg. 456]. The
plots use constant values A = 0.5 and B = C = D = 1 with initial condition (z(0),y(0)) = (1, 1).

Figure 4: Plot of prey and predator populations over time. The line with the lower peak value is the
predator population, and the other line is the prey population.

Notice how the predator population begins to decline shortly after the prey population starts to decrease.
Then when the prey population begins to recover, the predator population also starts to recover. This is
what one would expect to see in nature: the predator population grows as the prey population grows, until
the point where the number of predators becomes restrictive for the prey population. This causes the prey
population to decrease, and without enough prey to eat the predator population soon follows suit. This
repeats for both populations. They share a common period. We would like to know if such periodic behavior
also occurs in a system of three organisms.



3D Volterra-Lotka System

In order to extend the 2D system above into a 3D system, we will add a third species z to the system.
Species z is a population of predators that feeds exclusively on the other predator population y. The new
system makes the following assumptions in addition to those of the original system.

1. The new predator population z decreases exponentially in the absence of the other predator species y,
which is its prey.

2. The original predator population y decreases relative to the frequency with which its members meet
members of the new predator population z as a result of predation.

3. The new predator population z increases relative to the frequency with which its members meet mem-
bers of the original predator population y as a result of predation.

Therefore the 3D Volterra-Lotka System is:

& = Az — Buxy = xz(A-— By)
H(x(t),y(t),2(t) =§ v = —Cy+Daxy—FEyz = y(-C+ Dz —Ez) (7)
Z = —Fz+Gzy = z(—F+ Gy)

All constants A, B, C, D, E, F and G are positive. The —F'z term models assumption #1, —FEyz models
assumption #2 and Gzy models #3. This system suffers from the same shortcomings of the original system,
in that it maintains an unrealistic exponential growth assumption, but it also shares the advantage of being
a more tractable model.

The stationary points of the new system are similar to those of the original system. These points are
(x,y,2) =(0,0,0),(C/D, A/B,0). We will once again use the Principle of Linearized Stability in an attempt
to determine the stability of these points. Here is the linearized version of the 3D system.

A— By —Bx 0
VH(x,y,z) = Dy —C+ Dz —Ez —FEy (8)
0 Gz —F+ Gy

Pluging in the point (0,0,0) gives the matrix below, whose Eigenvalues are A, —C and —F. Because A
is positive and real, the point (0,0,0) is unstable. Once again, this is not surprising given the assumption
of exponential growth for x in the absence of predators. This point is not particularly interesting because
there are no organisms to observe at the point (0, 0, 0).

A 0 0
VH(0,0,00=[ 0 —C 0 9)
0 0 -—-F

Plugging the point (C/D, A/B,0) in to the linearized system produces the matrix below. Its Eigenvalues
are (GA/B) — F and +iv/AC. The Eigenvalue (GA/B) — F could be negative, positive or zero depending
on the choice of constants. If it is positive then the system is unstable around the point. Otherwise the
Principle of Linearized Stability tells us nothing about the stability of the system around this point. The
analysis of these various cases is carried out below.

0 —BC/D 0
VH(C/D,A/B,0)= | DA/B 0 —EA/B (10)
0 0 -F+GA/B

Before going into further analysis of these stationary points, we will first perform an analysis of invariant
surfaces within the model. An invariant surface is one which the solutions of a system do not escape, provided
they start on it. One way of determining if this is the case is to use the following theorem [2].



Theorem 2 Let S be a smooth closed surface in %> and

& = f(x,y,z)
H(x,y,z) = y = g(x,y,z) (11)
2 o= hzr,y,2)

where f, g and h are continuously differentiable. Suppose that for all (x,y,z) € S, 7 is a normal vector to
the surface S at (x,y,z) and @i - (&,9,2) = 0. Then S is invariant with respect to the system H.

Given that a population of organisms cannot reproduce when there are none left, it is reasonable to
assume that the xy, yz and xz coordinate planes are invariant with respect to the system. We will prove this
one plane at a time.

If z = 0 then we are in the xy coordinate plane, and the system becomes:

& = Az — Bxy
H(x(t),y(t),2(t) =1 ¥ = —Cy+ Dy (12)
z = 0

This is the same as the original 2D system. Therefore (,y, 2) = (Ax — Bxy, —Cy + Dxy,0). A vector
normal to the xy plane at all points is (0,0,1). Since (0,0,1) - (Az — Bay, —Cy + Dxy,0) = 0, the xy plane
is invariant with respect to the system. The trajectories within this plane are the same as those for the 2D
Volterra-Lotka system analyzed above.

The yz plane is defined by x = 0, which transforms the system into

i =0
H(x(t),y(t),2(t) = { ¥ ~Cy — Eyz (13)
z = —Fz+4+Gzy

Proving that this plane is invariant is done in the same way as the previous plane. This time the normal
vector is (1,0,0), and (1,0,0) - (0, —Cy — Eyz, —Fz + Gzy) = 0. Because y and z are both predator species
they cannot survive without prey. The species y dies out because it feeds on x, and once y dies out z follows
soon after, because it feeds on y. The z population may grow slightly at first, but as the y population nears
extinction, the z population cannot help but follow. This can be seen on the resulting phase space portrait.
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Figure 5: Phase space portrait of the yz plane for the 3D Volterra-Lotka system with three solutions
shown, whose initial conditions are (y(0),z(0)) = (3.7,2.5), (3.7,1.5), (3.7,0.5).

It is also easy to show that the xz plane is invariant. The system resulting from y = 0 is

T = Az
H(z(t),y(1),2(t)) = { ¥ = OF (14)



The vector (0,1,0) is normal to this plane and (0,1,0) - (Az,0,—Fz) = 0. Therefore the xz plane is
also invariant. In this plane, the x population grows without bound and the z population dies out. The
two populations do not interact with each other at all. The z population dies due to lack of food, and the
x population grows due to lack of predators. This exponential growth of the x population is illogical, and
therefore a shortcoming of the model. Here is the resulting phase space portrait:
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Figure 6: Phase space portrait of the xz plane for the 3D Volterra-Lotka system with three solutions
shown.

Because the trajectories of solutions in this plane do not cross each other within open sets, which excludes
the x and z axes, one would assume that an Integral exists for this plane. Once again making the separation
assumption, we will seek a function V(z,y) = f(x) 4+ h(z) such that V = 0.

: ov. oV, . .

V = e + 5. 5= 0  {Multivariable Chain Rule}

0 = a—VAx - a—vF z {Definition of System H within xz Plane}
Oz 0z

0 = f'(x)Az — k' (2)Fz {Separation Assumption}

W(z)Fz = f'(x)Ax

Since both sides of the equation are functions of different variables, both sides are equal to a constant,
which we choose to be 1.

W(z)Fz=1 A f(x)Az =1
W(z)=1/Fz A fl(z)=1/Ax

[W(2)dz= [(1/Fz)dz A [ f'(z)dz= [(1/Az)dx

In |z] In |z|
h(z) = K A
(2) ja + K A
where K; and K> are constants of integration. Combining them into a single constant provides the

following definition for the Integral V.

+ Ko

_Infx|  Inlz]

As with the previous Integral, we can look at the graph of V' and the graph of its contours to see the
relationship between it and the phase space portrait of the system in the xz plane.

=K (15)
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Figures 7 and 8: On the left is the graph of V(z,z) and on the right is the graph of the contours of V.
Notice the correspondence between these contours and the trajectories within the xz plane shown earlier.

Furthermore, this equation can be solved in terms of a single variable, so we choose to solve it for z. We
then graph the resulting function z(x) for F = A = 1 and several values of K to show that it is in fact the
same as the plot of the contours of V.

2(z) = Kz~ t/4 (16)
3.9
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Figure 9: The function z(z) for F=A=1and K =1,3,5,7,9.

It turns out that the surfaces generated by this function in R? are themselves invariant surfaces provided
that (GA/B) — F = 0, or rather, GA = BF. Remember from above that this makes all Eigenvalues of
the linear system arround the fixed point (C/D, A/B,0) equal to zero, which allows for the possibility of
stability around this point. By demonstrating the existance of invariant surfaces, we prove that this is in
fact the case. The invariant surfaces are shown below, followed by a proof of their invariance.
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Figure 10: The surfaces z(x) = K2~ /4 in ®3 for F=A=1and K =1,3,5,7.

Let W(x,y,2z) = z — Kz~ F/4 = 0. These surfaces are the same as those shown above, and there is a

vector 7 normal to these surfaces such that

FK
n=VW(z,y,z) = <Tx_(1+F/A),O, 1> (17)
which we use to show that all W are invariant in the 3D Volterra-Lotka system H.

FK
= <7x_(1+F/A), 0, 1> - (Azx — Bxy,—Cy+ Dzxy — Eyz, —Fz + Gzy) {Def. of @i and system H}

FK
= (Az - Ba:y)T:c*(HF/A) —Fz+Gzy
BFK
= FKa P/ Tyx_F/A — FKx /4 4L GKya=F/4 {Definition of z}
BFK BFK
— _TwaF/A + T%*F/A -0 {GA = BF =G = BF/A}

Therefore W is invariant in H for all x,y, z, provided GA = BF.

By looking at the phase space of the system generated for GA = BF we can see that the solutions are

closed trajectories within the invariant surfaces defined by W.

11



Figure 11: Phase space for the system H for A=B=C=D =FE =F =G =1 for solutions with initial
conditions (z(0),y(0),2(0)) = (0.25,0.5,2.5),(0.5,0.5,2), (1,0.5,1.5), (1.7,0.5, 1.2).

Once again using the Runge-Kutta method, we can display a graph of x, y and z across time t. This
graph demonstrates the periodic behavior of the system, which is non-asymptotically stable around the point
(C/D,A/B,0).
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Figure 12: Plot of populations x, y and z over time with constants A=B=C=D=FE=F=G=1
and initial conditions (z(0),y(0), 2(0)) = (0.5,1,2). Notice that for the given constants, GA = BF. The
species with the highest peak population is x, followed by y and z.
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Once again an equilibrium is achieved within the system, such that each predator population increases
as the population of its respective prey increases. Each predator population also peaks and then begins to
decrease shortly after its respective prey population peaks and begins to decrease. The plots of populations
x and y are essentially the same as they were in the 2D system, and the new predator population z behaves
similarly with respect to y as y behaves with respect to x. All three populations share a common period.

The two cases left to study are for GA < BF and GA > BF. We already know that if GA > BF then
the Eigenvalue (GA/B) — F is positive, and the system is therefore instable around the point (C/D, A/B,0).
This can be easily seen in both the phase space of the system and in the plots of x, y and z over time t.
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Figures 13 and 14: In the two plots above, A=B=C=D=F=F =1 and G = 1.6, thus
corresponding to the case where GA > BF. Each graph is for the solution with initial condition
(2(0),9(0),2(0)) = (0.5,1,2). The graph on the left depicts that phase space of the system, in which one
can see how the solution spirals endlessly upward and away from (C/D, A/B,0). The plots on the right are
of x, y and z over time. Populations x and z approach infinity non-monotonically as time goes to infinity.
The y population fluctuates more and more wildly as time increases.

Biologically, this solution makes no sense. Unbounded growth of a population does not occur in nature,
because environmental factors and intraspecies competition restrict population growth. We expect a max-
imum sustainable population for each species, but the exponential growth model does not impose such a
restriction.

The last case to consider is for GA < BF. In this case the Eigenvalue (GA/B) — F is negative, and
because the real parts of the other two Eigenvalues are zero, we cannot be sure of the behavior of the system.
However, the phase space of the system in this case suggests that the solutions approach the xy plane and
are stable around the point (C'/D, A/B,0).
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Figure 15: Phase space for constants A=B =C =D =FE =F =1 and G = 0.88 with initial condition
(2(0),4(0), 2(0)) = (0.5,1,2). The solution spirals downwards, getting ever closer to the xy coordinate
plane.

In order to prove this, we will first make use of the surfaces z = K2~ /4 defined earlier. These surfaces are
no longer invariant, but we can show that the the trajectories in the case of GA < BF travel downward along
these surfaces for decreasing values of K. First we redefine the surface as the function K (z,y, z) = zaz¥/4.
Then we show that the derivative of the function with respect to time ¢ is always negative.

D K(a(t).u(0). (1)

= %(sz/A) {Definition of K}
= z2F/A 4 (F/A)zixF/A-1 {Product rule}

= 2(—F+Gy)2"/4 4+ (F/A)zx(A — By)z2F/=1  [Definition of system H}
= 2af/A~F+Gy+ F — (FB/A)y)

= yz/4(G— (FBJ/A)) <0 {r,y,2>0 A GA< BF =G — (FB/A) < 0}

Therefore K < 0. This means that as time increases, the surfaces upon which the solutions are found
have lower K values, meaning that the trajectories in phase space move along these surfaces from higher to
lower values of K. Unfortunately, the surface defined for the limit of K approaching zero is not the xy plane,
but rather the union of the xy and yz planes. This leaves open the possibility of trajectories approaching
the plane x = 0 as time goes to infinity. Therefore we must do some further analysis to assure that all
trajectories go only to the xy plane.
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To do this we will define trapping regions. A trapping region is one which a trajectory will never leave
once it has entered it. By making these trapping regions neighborhoods of the point (C/D,A/B,0), we
directly prove the stability of the point using our definition of stability. We also want to assure that all
trajectories move towards the xy plane, therefore the surfaces defining our trapping regions will need to
intersect the xy plane in such a way that the region between the surfaces and the xy plane is completely
enclosed.

Hill shaped surfaces meet these requirements, and in going back to the analysis of the 2D system we
recall the Integral G(z,y) = C'ln|z| — Dx 4+ Aln|y| — By, whose graph is hill shaped. First we convert this
Integral function to an equation of three variables: z — Cln|z|+ Dz — Aln|y| + By = 0. For fixed constants
A, B,C, D, the graph of this equation is a single surface in ®3. By replacing the 0 with a constant M, we
get a different surface for each M. Furthermore, surfaces with smaller M values are nested inside surfaces
with higher M values, much like Russian nesting dolls. Our goal is then to prove that as time increases, the
trajectories burrow down along these surfaces from surfaces with higher M values to surfaces with lower M
values. In other words, we wish to prove that

M(w(t)ay(t),z(t)) < 0 for M(z(t),y(t), 2(t)) = z — Cln|z| + Dz — Aln|y| + By as)
O MG t).ut1).2(0)
= %(Z —Cln|z|+ Dx — Aln|y| + By) {Definition of M}

= -0+ Dpi-AY 4 By
€ Y
= {Definition of System H}

x(A — By) —C+ Dx — Ez)

Y
= —Fz+4+Gzy— AC+ BCy+ ADx — BDxy+ AC — ADx + AEz — BCy + BDxy — BEyz

—Fz+Gzy—C + D(Ax — Bxy) —Ay( + B(—Cy + Dzy — Eyz)

= —Fz+4+Gzy+ AEz — BEyz

= z(—F+ AFE)+ yz(G — BE)

Now we have a problem. We are unable to prove that the expression z(—F + AFE) 4+ yz(G — BE) is
negative. Because y and z are positive, it would suffice to show that of (—F 4+ AFE) and (G — BE), at least
one is less than zero and the other is at most zero. However, we will have to modify our surface function M
to accomplish this. Looking at the expressions (—F + AFE) and (G — BE), we remember that we are at the
moment concerned with the case where GA < BF'. If the constants F' and G were both multiplied by AE/F,
then our expressions would be changed to (—AE + AF) =0 and (AEG/F) - BE) = E((GA/F) — B) < 0.
Both F' and G entered our expressions from Z, and because constants remain after taking the derivative, our
function M will satisfy our requirements if we modify it such that:

M(z,y,z) = z2(AE/F) — Clu|z| + Dx — Aln|y| + By (19)

Given this function, we know that M < 0 by construction, which proves that trajectories of the system
spiral down along the surfaces defined by M for decreasing values of M. These layered surfaces appear as
follows:
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Figure 16: Plots of 2(AE/F)—Cln|z|+ Dx — Aln|y|+ By=M for A=B=C=D=E=F=1and
M = 3,4,5. The trajectories of the 3D Volterra-Lotka system for the case GA < BF burrow downward
from surfaces with higher M values to surfaces with lower M values.

This proves that all trajectories for the case where GA < BF spiral downward towards the the xy plane by
travelling through the surfaces 2(AE/F) —Cln |z|+ Dz — Aln |y| + By = M and z = Ka~¥/4 for decreasing
values of M and K. Because the trajectories become trapped within neighborhoods of (C/D, A/B,0), this
fixed point is stable. By once again using the Runge-Kutta method of numerical approximation we get the

following plots of populations x, y and z over time.

Figure 17: Plots of x, y and z over time t for A= B =C =D =F =F =1 and G = 0.88 with initial
condition (z(0),y(0),2(0)) = (0.5,1,2). This behavior matches the phase space plot shown earlier, and
demonstrates how the population of z approaches 0 as time goes to infinity.

This is biologically realistic behavior. Because of the choice of constants, the z population tends towards
extinction and the x and y populations tend towards the same equilibrium they establish in the 2D system.
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Conclusion

The two-dimensional Volterra-Lotka system exhibits stable periodic behavior for all non-zero initial condi-
tions. These trajectories run along closed paths around the stationary point (C/D, A/B), which is non-
asymptotically stable. The other stationary point is at (0,0), for which both populations are extinct. This
point is instable. If only the predator population y is extinct, then the prey population x grows without
bound. If only the prey population x is extinct, then the predator population y approaches extinction. Con-
stants A, B, C, D are positive by definition, so no alteration of the constants changes this behavior. Periodic
stability is present for all possible combinations of variables.

The main weakness of this model is the exponential growth assumption. The unbounded growth of the
prey species in the absence of predators is biologically unrealistic. The fact that the model does not allow
for the extinction of either species (provided both species were present at the start) is also unrealistic. The
introduction to each equation of a social stress term would convert the system to a logistic growth model,
and solve these problems. Social stress is a way of representing the restrictions imposed on a population by
intraspecies competition and environmental factors.

Another problem with this system is that it is completely closed. Organisms can neither leave these
populations nor enter them from outside. This means that no migration is possible. This model also
assumes that the predator has one and only one prey, and that the prey has one and only one predator. This
is rarely the case in nature.

The three-dimensional system shares many of the same problems. Although it models three populations,
the system is still closed. These populations cannot change as a result of migration, nor can they interact
with other populations that are not modeled. The x and z species do not even interact with each other
directly, but rather through the intermediate species y.

In the three-dimensional Volterra-Lotka system, the three coordinate planes are invariant with respect to
the system. The xy plane is identical to the 2D Volterra-Lotka system. In the yz plane, there is no bottom
level prey, and as a result both populations tend towards extinction. In the xz plane, the z population dies
out because it cannot eat species x, but the x population grows unbounded.

Outside of these planes, there are three cases for how the system behaves. If GA = BF, then solutions are
periodic. All trajectories run along invariant surfaces z = Kz~ /4 and the stationary point (C/D, A/B,0)
is stable. This is biologically realistic behavior. The system maintains an equilibrium similar to the one
established in the 2D system. Prey populations increase until the respective predator populations get too
large, and the predator populations begin to drop soon after their respective prey populations begin to drop.
Once the predator populations are small again, the prey populations growth anew, repeating the process.

In the case where GA > BF', both the x and z populations grow without bound, while the y population
fluctuates ever more wildly. The trajectories spiral away from the xy plane indefinately. This is unrealistic
behavior, and as with the 2D system could be fixed by switching to a logistic growth model. Because all
trajectories spiral away from the xy plane, (C/D, A/B,0) is unstable.

The case GA < BF is the opposite of this case. The trajectories for these two cases are the same except
that they flow in opposite directions. In this case all trajectories spiral towards the xy plane. As they near
the xy plane the z population approaches extinction, and populations x and y approach the equilibrium
exhibited in the 2D system. The point (C/D, A/B,0) is therefore stable. The fact that z can only approach
zero but not reach it is a weakness of the model.

In the 3D model the behavior of the system depends on the constants A, B,G and F. The x and y
populations survive in all three cases, but the survival of species z hinges upon these parameters. Increasing
G or A, or decreasing B or F, both tend towards the case GA > BF in which the z population approaches
infinity. Alternatively, decreasing G or A, or increasing B or F', both tend towards the case GA < BF, in
which the z population becomes extinct. Only in the case GA = BF does z survive in a biologically realistic
fashion. It is surprising that C, D and F, the parameters directly affecting the z population’s only food
source, namely population y, do not affect the qualitative behavior of the system.

Of course, the very fact that the parameters are constants is another weakness of the model. Each
constant represents either a growth rate or the frequency with which one species comes into contact with
another. In the real world, these values would certainly not remain constant. The time of day and the
current season often affect these values. Certain animals only mate during certain seasons. Some animals
hibernate or migrate when the seasons change. Some animals hunt by day, and others are nocturnal. This
means that A, B,C, D, E, F and G should be functions of ¢ rather than constants, but the complexity of
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such a model is daunting. The Volterra-Lotka model remains tractable by letting these values be constants
rather than functions.

In general, the Volterra-Lotka model can be useful in studying real world behavior. Excluding the cases
in which unbounded growth of any population occurs, this model is applicable in the real world [4]. By first
understanding the exponential growth model, one can better understand why a logistic growth model would
be more realistic. The Volterra-Lotka equations serve as a useful teaching tool, and by studying the 2D and
3D systems, one learns of several useful techniques for studying the stability of non-linear dynamic systems.

Maple Code for 2D System

The 2D Volterra-Lotka System with exponential growth.
> prey i= D(x)(t) = x(t)*(a-b*y(t));
> pred := D(y)(t) = y(t)*(-c+d*x(t));

A specific system in whicha=b=c=d=1.
> preyl := subs(a=1,b=1,prey);
> predl := subs(c=1,d=1,pred);

> with(DEtools):

(Figure 2) The phase space portrait of the system with initial conditions (x(0),y(0)) = (0.25,0.25), (0.5,0.5),
(0.75,0.75).

> phaseportrait([preyl,pred1], [x(t),y(t)], t=0..10,

> [[x(0)=0.25,y(0)=0.25],[x(0)=0.5,y(0)=0.5],[x(0)=0.75,y(0)=0.75]],

> stepsize=.05, linecolour=blue);

An Integral for the system.
> G = (x,y) -> c*In(x) - d*x + a*In(y) - b*y;

Integral witha=b=c=d = 1.
> G1 := subs(a=1,b=1,c=1,d=1,G(x,y));

(Figure 1) Graph of the Integral witha=b=c=d = 1.
> plot3d(G1,y=0..3.7,x=0..3.7);

> with(plots):

(Figure 3) Contour plot of the Integral.
> contourplot(G1,x=0..3.7,y=0..3.7,contours=10);

Numerical solution with Runge-Kutta method
> f:= (xy) -> (0.5%x - x*y, -y + x*y);

> t[0] := 0;
> x[0] := 1;
> y[0] :=1;
> h := 0.1;

>kl := (X7Y) -> f(X7Y);

> k2 := (x,y) -> f((x,y)+(h/2)*k1(x,y));

> k3 := (Xay) -> f((X,y)+(h/2)*k2(X,y));

> k4 := (X,Y) -> f((X7Y)+h*k3(X’Y));

> xy = (x,y) -> (x,5)+(h/6)*(k1l(x,y)+2*k2(x,y)+2*k3(x,y)+k4(x,y));
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N := 200;

for n from 0 to N do
nextpoint := xy(x[n],y[n]);
x[n+1] := nextpoint[1];
y[n+1] := nextpoint[2];
t[n+1] := t[n] + h;

end do;

VVVYVYVYVYV

> xrun := seq([t[i],x[i]],i=0..N);

> yrun := seq([t[i],y[i]],i=0..N);

(Figure 4) Plot for x and y with Runge-Kutta, time step 0.1, initial conditions (x(0),y(0)) = (1,1) and
constants a =0.5andb=c=d = 1.

> plot([[xrun],[yrun]]);

Maple Code for 3D System

The 3D Volterra-Lotka System with exponential growth.
> prey := D(x)(t) = x(t)*(a-b*y(t));

> prpr := D(y)(t) = y(t)*(-c+d*x(t)-E*z(t));

> pred := D(z)(t) = z(t)*(-f+g*y(t));

A specific system in whicha=b=c=d=E=f=g=1.
> preyl := subs(a=1,b=1,prey);

> prprl := subs(c=1,d=1,E=1,prpr);

> predl := subs(f=1,g=1,pred);

> with(DEtools):

(Figure 11) Phase space of the system fora=b=c=d=E=f=g=1.
> DEplot3d(preyl,prprl,predl,x(t),y(t),z(t),t=0..10,

> [[x(0)=0.25,y(0)=0.5,2z(0)=2.5],[x(0)=0.5,y(0)=0.5,z(0)=2],

> [x(0)=1,y(0)=0.5,z(0)=1.5],[x(0)=1.7,y(0)=0.5,z(0)=1.2]],

> stepsize=.05,linecolour=blue);

(Figure 15) Phase space of the system fora=b=c=d=E =1f=1 and g = 0.88,
initial condition (x(0),y(0),z(0)) = (0.5,1,2).

> DEplot3d(preyl,prprl,subs(f=1,5=0.88,pred),x(t),y(t),z(t),t=0..30,

> [[x(0)=0.5,y(0)=1,z(0)=2]], stepsize=.05,linecolour=blue);

(Figure 16) Trapping Regions
> L = -y+In(y) -x +In(x);
> plot3d([L+0,L+3,L+4,L+5], x=0..3, y=0..3);

(Figure 13) Phase space of the system fora=b=c=d=E ={=1 and g = 1.6,
initial condition (x(0),y(0),z(0)) = (0.5,1,2).

> DEplot3d(preyl,prprl,subs(f=1,g=1.6,pred),x(t),y(t),z(t),t=0..14.2,
> [[x(0)=0.5,y(0)=1,z(0)=2]], stepsize=.05,linecolour=Dblue);

(Figure 5) The phase space portrait of the yz plane (let x = 0) with
initial conditions (y(0),z(0)) = (3.7,2.5), (3.7,1.5), (3.7,0.5).

> phaseportrait([subs(x(t)=0,prprl),predl],[y(t),z(t)],t=0..10,
> [[y/(0)=3.7,2(0)=2.5],[y/(0) =3.7,2(0)=1.5],y(0) =3.7,2(0)=0.5]],
> stepsize=.05,linecolour=blue);
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(Figure 6) The phase space portrait of the xz plane (let y = 0) with

initial conditions (x(0),z(0)) = (3.7,2.5), (3.7,1.5),(3.7,0.5).

> phaseportrait([subs(y(t)=0,preyl),subs(y(t)=0,pred1)],[x(t),z(t)],
> t=0..1.5,[[x(0)=1,z(0)=3.7],[x(0)=2,z(0)=3.7],[x(0)=3,2(0)=3.7]],
> stepsize=.05,linecolour=blue);

An Integral for the xz plane.
> V= (x,z) -> In(x)/A + In(z) /F;

Specific Integral with A = F = 1.
> V1 := subs(A=1,F=1,V(x,z));

(Figure 7) Graph of V1.
> plot3d(V1,x=0..14,2=0..3.7);

> with(plots):

(Figure 8) Contour plot of the Integral.
> contourplot(V1,x=0..14,2=0..3.7,contours=10);

Transform Integral into function z of x.
>7Z:=x-> K*¥x"(-F/A);

Let F/A = 1.
> Z1 := subs(F/A=1, Z(x));

(Figure 9) Graphs of several Z1 for different K.
> plot([subs(K=1,Z1),subs(K=3,Z1),subs(K=5,Z1),subs(K=7,Z1),subs(K=9,Z1)], x=0..14);

(Figure 10) Invariant surfaces in 3D System for ga = fh.
> plot3d([subs(K=1,Z1),subs(K=3,Z1),subs(K=5,Z1),subs(K="7,Z1)], x=0..4,y=0..2.5);

Numerical solution with Runge-Kutta method for ga = fb.
> f = (x,y,2) -> (x - x*y, -y + x*y - y*z, -z + y*z);

> t[0] := 0;
> x[0] := 0.5;
> y[0] := 15
> z[0] := 2;
> h := 0.1;

> k1 := (x,y,2) -> f(x,y,2);

> k2 := (x,y,2) -> f((x,,2)+(h/2)*k1(x,y,2));

> k3 := (x,y,2) -> f((x,y,2z)+ (h/2)*k2(x,y,z));

> k4 := (x,y,2) -> {((x,y,2)+h*k3(x,y,2));

> xyz = (X,y,2) -> (%,5,2)+(h/6)*(k1(x,y,z) +2%k2(x,y,2z) +2*k3(x,y,2) + k4(x,y,2) );

> N := 200;

> for n from 0 to N do

> nextpoint := xyz(x[n],y[n],z[n]);
> x[n+1] := nextpoint[1];

> y[n+1] := nextpoint[2];

> z[n+1] := nextpoint[3];

> t[n+1] := t[n] + h;

> end do;
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> xrun := seq([t[i],x[i]],i=0..N);
> yrun := seq([t[i],y[i]],i=0..N);
> zrun := seq([t[i],z[i]],i=0..N);

(Figure 12) Plot for x, y and z with Runge-Kutta, time step 0.1, initial conditions (x(0),y(0),z(0)) = (0.5,1,2)
and constantsa=b=c=d=e=f=g=1.
> plot([[xrun],[yrun],[zrun]],color=[red,blue,green));

Numerical solution with Runge-Kutta method for ga  fb.
> g = (X,32) -> (x - x*y, -y + x*y - y*z, -z + 0.88*y*z);

> t[0] := 0;
> x[0] := 0.5;
> y[0] :=1;
> z[0] := 2;
> h := 0.1;

>kl := (x,y,2) -> g(%,¥,2);

> k2 := (x,,2) -> g((x,y:2)+(h/2)*k1(x,y,2));

> k3 := (x,y,2) -> g((x,¥,2)+(h/2)*k2(x,y,z));

> k4 := (x,y,2) -> g((x,y,2)+h*k3(x,y,2));

> xyz = (X,y,2) -> (%,5,2)+(h/6)*(k1(x,y,z)+2*k2(x,y,z) +2*k3(x,y,2) +k4(x,y,z));

N := 200;
for n from 0 to N do
nextpoint := xyz(x[n],y[n],z[n]);
x[n+1] := nextpoint[1];
y[n+1] := nextpoint[2];
z[n+1] := nextpoint[3];
t[n+1] := t[n] + h;
end do;

VVVVVYVVYV

xrun := seq([t[i],x[i]],i=0..N);
yrun := seq([t[i],y[i]],i=0..N);
zrun := seq([t[i],z[i]],i=0..N);

vV VvV V

(Figure 17) Plot for x, y and z with Runge-Kutta, time step 0.1, initial conditions (x(0),y(0),z(0)) = (0.5,1,2)
and constantsa=b=c=d=e=f=1,g = 0.88.
> plot([[xrun],[yrun],[zrun]],color=[red,blue,green)]);

Numerical solution with Runge-Kutta method for ga ; fb.
> j = (Xy2) -> (x - x*y, -y + x*y - y*z, -z + 1.6%y*2);

> t[0] := 0;
> x[0] := 0.5;
> y[0] :=1;
> z[0] := 2;
> h := 0.1;

> k1 := (x,y,2) -> j(X,¥,2);

> k2 := (x,y,2) -> j((x%,y,2)+ (h/2)*k1(x,y,z));

> k3 := (x,y,2) -> j((x,¥,2)+(h/2)*k2(x,y,2));

> k4 := (x,y,2) -> j((x,y,2)+h*k3(x,y,2));

> xyz = (X,y,2) -> (X,¥,2)+(h/6)*(k1(x,y,z)+2*k2(x,y,z) +2*k3(x,y,2z) +k4(x,y,2));
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N := 200;
for n from 0 to N do
nextpoint := xyz(x[n],y[n],z[n]);
x[n+1] := nextpoint[1];
y[n+1] := nextpoint[2];
z[n+1] := nextpoint[3];
t[n+1] := t[n] + h;
end do;

VVVYVVYVVYV

xrun := seq([t[i],x[i]],i=0..N);
yrun := seq([t[i],y[i]],i=0..N);
zrun := seq([t[i],z[i]],i=0..N);

vV V VvV

(Figure 14) Plot for x, y and z with Runge-Kutta, time step 0.1, initial conditions (x(0),y(0),z(0)) = (0.5,1,2)
and constantsa=b=c=d=e=f=1,g = 1.6.
> plot([[xrun],[yrun],[zrun]],color=[red,blue,green)]);
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