Comparing Direct and Indirect Encodings Using Both Raw and Hand-Designed Features in Tetris

By Lauren Gillespie, Gabby Gonzales and Jacob Schrum

gillespl@southwestern.edu

gonzale9@alumni.southwestern.edu

schrum2@southwestern.edu

Southwestern University

Introduction

- Challenge: Use less domain-specific knowledge
 - Important for general game-playing agents
 - Requires using raw features
 - Difficult to train agents
- This Research
 - Compare evolutionary algorithm HyperNEAT to NEAT
 - See if indirect encoding of HyperNEAT advantageous
 - Also compare with hand-designed features

Tetris Domain

- Consists of 10 x 20 game board
- Orient tetrominoes to clear lines
- Clearing multiple lines = more points
- Hole: open spaces with at least one block above
- Previous Work
 - All use hand-designed features
 - Reinforcement learning⁺ and evolutionary computation[‡]

†Bertsekas et al. 1996. Temporal Differences-Based Policy Iteration and Applications in Neuro-Dynamic Programming. ‡ Boumaza 2009. On the Evolution of Artificial Tetris Players.

Hand-Designed vs. Raw Features

Hand-Designed

- Hand-picked information of game state as input
- User processes input
- Cons: + Very domainspecific, not versatile
 - Human expertise needed

- One feature per game state
 element
- Little input processing
 - Pros: + Less limited by domain[†]
 - Less human expertise needed
- Cons: + Large input space & networks
 - Harder to learn, more time

NEAT vs. HyperNEAT

Direct Encoding

Raw Features Setup

- Board configuration:
 - + 2 input sets: location of all blocks, location of all holes
- NEAT: Inputs sets given as linear sequence
- HyperNEAT: Two 2D input substrates

Hand-Designed Features Setup

- Bertsekas et al. features[†] plus additional hole per column feature
- All scaled to [0,1]
- Column height
- Height difference
- Tallest column
- Number of holes
- Holes per column

† Bersekas et al. 1996. Neuro-Dynamic Programming

NEAT vs. HyperNEAT: Raw Features

NEAT vs. HyperNEAT: Hand-Designed Features

Raw Features Champion Behavior

NEAT with Raw Features HyperNEAT with Raw Features

Hand-Designed Features Behavior

HyperNEAT with Hand-Designed Features

NEAT with Hand-Designed Features

Conclusion

- Raw features
 - Indirect encoding of HyperNEAT effective
 - Geometric awareness an advantage
- Hand-designed features
 - Ultimately NEAT produced better agents
- Future work:
 - HybrID might combine strengths of both
 - Raw Features in other domains, Ms. Pac-Man

Questions?

Contact info:

gillespl@southwestern.edu schrum2@southwestern.edu gonzale9@alumni.southwestern.edu

Movies and Code:

https://tinyurl.com/tetris-gecco2017

Auxiliary Slides

Visualizing Substrates

Inputs

Hidden Output

Result

Experimental Setup

- Agent networks evaluated each piece placement
- Each experiment evaluated with 30 runs
 - + 500 generations/run, 50 agents/generation
 - Objectives averaged across 3 trials/agent
 - Noisy domain, multiple trials needed
- NSGA-II objectives: game score & survival time

Research & Creative Works Symposium 2018

Game score

NSGA-II

- Pareto-based multiobjective EA optimization
- Parent population, μ , evaluated in domain
- Child population, λ , evolved from μ and evaluated
- $\mu + \lambda$ sorted into non-dominated Pareto fronts
 - Pareto front: All individual such that
 - $v = (v_1, \ldots, v_n)$ dominates vector $u = (u_1, \ldots, u_n)$ iff 1.∀*i* ∈{1, *n*}: $v_i \ge u_i$, and Paretotront

 $2.\exists i \in \{1,...,n\}: v_i > u_i.$

- New µ picked from highest fronts
- Tetris objectives: Game score, time

Time alive

Visualizing Link Weights

Future Work

- HybrID⁺
 - Start with HyperNEAT, switch to NEAT
 - Gain advantage of both encodings
- Raw feature Tetris with Deep Learning
- Raw features in other visual domains
 - Video games: DOOM, Mario, Ms. Pac-Man
 - Board games: Othello, Checkers

† Clune et al. 2004. HybrID: A Hybridization of Indirect and Direct Encodings for Evolutionary Computation.

- NeuroEvolution of Augmenting Topologies⁺
- Synaptic and structural mutations
- Direct encoding
 - Network size proportional to genome size
- Crossover alignment via historical markings
- Inefficient with large input sets
 - Mutations do not alter behavior effectively

† Stanley & Miikkulainen. 2002. Evolving Neural Networks Through Augmenting Topologies

HyperNEAT

- Hypercube-based NEAT[†]
- Extension of NEAT
- Indirect encoding

- + Evolved CPPNs encode larger substrate-based agent ANNs
- Compositional Pattern-Producing Networks (CPPNs)
 - CPPN queried across substrate to create agent ANN
 - Inputs = neuron coordinates, outputs = link weights
- Substrates
 - + Layers of neurons with geometric coordinates
 - + Substrate layout determined by domain/experimenter

† Stanley et al. 2009. A Hypercube- based Encoding for Evolving Large-scale Neural Networks

Evolutionary Algorithms (EA)

NEAT

- NeuroEvolution of Augmenting Topologies[†]
- Mutates structure and weights
- Direct encoding
 - Network size = genome size
- Inefficient with large input sets
 - Mutations not as effective

HyperNEAT

- Hypercube-based NEAT⁺
- Indirect encoding
 - Evolved CPPN *indirectly* plays game through agent network
- Geometric awareness
 - Agents can learn from domain geometry
- Better with large input sets
 - Geometric awareness gives agents more information

† Stanley & Miikkulainen. 2002. Evolving Neural Networks Through Augmenting Topologies

Afterstate Evaluation

- Evolved agents used as afterstate evaluators
- Determine next move from state after placing piece
- All possible piece locations determined, evaluated
- Placement with best evaluation from state chosen
- If placements lead to loss, not considered
- Agent moves piece to best placement, repeats

Raw Features Setup

- Board configuration:
 - Two input sets
 - 1. Location of all blocks
 - * block = 1, no block = 0
 - 2. Location of all holes
 - * hole = -1, no hole = 0
- NEAT: Inputs in linear sequence
- HyperNEAT: Two 2D input substrates

