Abstract

Previous research using evolutionary computation in Multi-Agent Systems indicates that assigning fitness based on team vs. individual behavior has a strong impact on the ability of evolved teams of artificial agents to exhibit teamwork in challenging tasks. However, such research only made use of single-objective evolution. In contrast, when a multiobjective evolutionary algorithm is used, populations can be subject to individual-level objectives, team-level objectives, or combinations of the two. This poster explores the performance of cooperatively coevolved teams of agents controlled by artificial neural networks subject to these types of objectives. Specifically, predator agents are evolved to capture scripted prey agents in a torus-shaped grid world. Because of the tension between individual and team behaviors, multiple modes of behavior can be useful, and thus the effect of modular neural networks is also explored. Results demonstrate that fitness rewarding individual behavior is superior to fitness rewarding team behavior, despite being applied to a cooperative task. However, the use of networks with multiple modules allows predators to discover intelligent behavior, regardless of which type of objectives are used.

Predator-Prey Domain

- Three predators and two prey
- Torus-shaped grid world [2]
- Predators evolved against robotic/scripted prey
- Predator fitness: different combinations of multiple objectives (NSGA-II [3]):
 - Individual: only fitness functions rewarding the predators as individuals.
 - Team: only fitness functions rewarding the team as a whole.
 - Both: a combination of individual and team fitness functions.
 - 1M: neural networks have only one module, or mode of behavior.
 - 2M: neural networks have two modules, or modes of behavior.

Results

- Teams with individual selection performed better than those with team selection, but teams with both types of selection at the same time also showed potential.
- Teams with 2 modules performed the best even if they used team objectives. They also showed more complex, specialized behavior, including the following:
 - Predators developed supportive roles, such as herding the prey and acting as a blocker for the other, more aggressive predators.
 - Predators developed aggressive roles for chasing down the prey, and learned to work together with the supportive roles to surround and capture prey.
- Predators had the ability to switch between supportive (altruistic) and aggressive (selfish) roles when necessary.

Multi-Modal Networks and Levels of Selection

Objectives for Each Sub-Population

<table>
<thead>
<tr>
<th>Sub-Population</th>
<th>Individual Selection</th>
<th>Team Selection</th>
<th>Both Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Team</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Both</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

This table shows the number of fitness functions for each individual sub-population in each type of experiment. These numbers are the same for experiments where networks have either one or two modules. Ind stands for Individual Selection, and Team stands for Team Selection. Catch indicates the maximization of the number of prey caught. Dist indicates the minimization of distance between predator and prey (two distinct fitness functions of this type measure distances to the two distinct prey agents).

Neural Modularity

Networks have either one or two modules. A module is a set of outputs, corresponding to up, down, left, right, and stay still actions. Each module also has a preference neuron: the preference neuron with the maximal output determines which module is used.

Selection

Selection is performed on each population individually [1]. Fitness functions can reward individual behavior (individual selection), behavior of the entire team (team selection) or both.

References

MOVIES: http://southwestern.edu/~schrum2/SCOPE/predprey.html