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Generating Levels

e GANs are trained on Lode Runner level data
from VGLC [2].

e The levels In the training set for each GAN
influence the variety of levels it produces. For
example the WordsPresent set contains levels
where obstacles are shaped like letters or words.

Introduction

Generative Adversarial Networks (GANs) can generate
convincing fake results that are indistinguishable from a
training set. However, the size and diversity of the
training set affects the quality of the GAN. Lode Runner
levels are generated using GANs trained with different
sizes and mixtures of training examples.
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Figure 3: A level that was generated
by the GAN in the tile based
representation that resembles the
original game.
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levels to generate levels that are similar iIn
structure but completely new in design.

A platform game where the player must -
collect all of the gold in the level by

running across ground, climbing ladders
and ropes, and avoiding enemies.

Figure1: Gold and
Enemy Tiles
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Experiment and Results

. e | | | | | e MAP-Elites generates a diverse array of quality
0 10000 20000 30000 40000 50000 LR S . T (ER T levels. Diversity is defined in terms of the percent
penermedindcus of the level that is solid, and the numbers of
enemies and treasures in the level. Levels with
longer solution paths are considered to have
higher quality.
e The heat map shows the solution path length
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Generative Adversarial Networks

e GANs generate new fake results based off of a
SpeCiﬁC training set. Solution Path Length
e Previous work [1] has proved that GAN networks can
generate convincing fake results based off of the
training sets 1t Is trained on to generate new and
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Figure 2. The generator (left) uses a training set from
the original levels to learn the structure of the levels to
generate convincing fakes. The discriminator (right)
tries to determine if the level outputted from the
generator is real or fake.
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