
Querying Across Time to Interactively Evolve Animations
Isabel Tweraser

Southwestern University
Georgetown, Texas

twerasei@southwestern.edu

Lauren E. Gillespie
Southwestern University

Georgetown, Texas
gillespl@southwestern.edu

Jacob Schrum
Southwestern University

Georgetown, Texas
schrum2@southwestern.edu

ABSTRACT
Compositional Pattern Producing Networks (CPPNs) are a genera-
tive encoding that has been used to evolve a variety of novel artifacts,
such as 2D images, 3D shapes, audio timbres, soft robots, and neural
networks. This paper takes systems that generate static 2D images
and 3D shapes with CPPNs and introduces a time input, allowing
each CPPN to produce a different set of results for each slice of
time. Displaying the results in sequence creates smooth animations
that can be interactively evolved to suit users’ personal aesthetic
preferences. A human subject study involving 40 individuals was
conducted to demonstrate that people find the dynamic animations
more complex than static outputs, and find interactive evolution of
animations more enjoyable than evolution of static outputs. The
novel idea of indirectly generating artifacts as a function of time
could also be useful in other domains.

CCS CONCEPTS
• Applied computing → Media arts; • Computing methodologies
→ Neural networks; Generative and developmental approaches;

KEYWORDS
Art, Animation, Interactive evolution, Indirect encoding

ACM Reference Format:
Isabel Tweraser, Lauren E. Gillespie, and Jacob Schrum. 2018. Query-
ing Across Time to Interactively Evolve Animations. In GECCO ’18: Ge-
netic and Evolutionary Computation Conference, July 15–19, 2018, Kyoto,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3205455.
3205460

1 INTRODUCTION
Compositional Pattern Producing Networks (CPPNs [11]) are a gen-
erative encoding with a broad range of applications. These networks
are a type of artificial neural network that have arbitrary topologies
and whose activation functions are chosen from a variety of functions
that help create interesting patterns. CPPNs are typically evolved to
be queried across a coordinate frame, and indirectly encode patterns
across that space. CPPNs have many applications: they have been
used to generate 2D images [10], 3D shapes [2], audio timbres [5],
soft robots [1], and neural networks [12]. Several of these examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205460

allow users to evolve their own artistic artifacts using interactive
evolution. Picbreeder [10] (see Section 2.1) is a prominent early
example that allows an online community to generate 2D images.
An interesting follow up is Endless Forms [2] (see Section 2.2) that
instead evolves three-dimensional objects.

While Picbreeder and Endless Forms are innovative applications
of CPPNs, they both produce static outputs. Endless Forms displays
animations, but these animations are merely rotations of static shapes.
In this paper, CPPNs are queried across time to create dynamic
outputs. Specifically, AnimationBreeder and 3DAnimationBreeder
are two new programs that expand on the original ideas of Picbreeder
and Endless Forms by introducing a new input to CPPNs: time. By
adding a time input to CPPNs and generating sequences of results
over an interval of time rather than individual results, both 2D and
3D animations can be generated. This enhancement results in more
complex and interesting dynamic results.

Users recognize the increase in complexity that the addition of a
time input brings to these animating programs, in contrast to their
static counterparts. A human subject study was conducted in which
users interacted with one of the static programs and its associated
animating program for several generations, and were then surveyed
to assess their experience with each program. The study shows that
users enjoyed the animated programs more than the static ones, and
think that the animated programs produce more complex artifacts
than their static counterparts. The study supports the notion that
introducing time to interactively evolve animations is a novel new
application of CPPNs that produces interesting new artifacts.

This paper proceeds by discussing previous work evolving artistic
artifacts with CPPNs (Section 2), then delves into the technical de-
tails of how various interactive evolution programs are implemented
(Section 3). In Section 4, the user interface is described. Then Sec-
tion 5 presents the protocol and results of the human subject study
used to asses the new approaches of this paper. A discussion of the
results follows (Section 6) before the paper concludes (Section 7).

2 PREVIOUS WORK
This section describes previously implemented interactive evolution
programs that are recreated and extended in this paper.

2.1 Picbreeder
Picbreeder1 is an online interactive evolutionary art system that
allows different Internet users to evolve results from simple random
starting points, or from results created by others [10]. Picbreeder was
an early example of the expressive power of CPPNs. The interface
displays a series of images on buttons. Each image is generated by
querying a CPPN at each pixel of the image. Users select images
they like, and then go to the next generation to see similar, but

1http://picbreeder.org

https://doi.org/10.1145/3205455.3205460
https://doi.org/10.1145/3205455.3205460
https://doi.org/10.1145/3205455.3205460
http://picbreeder.org

GECCO ’18, July 15–19, 2018, Kyoto, Japan Isabel Tweraser, Lauren E. Gillespie, and Jacob Schrum

slightly different offspring images derived from their chosen images.
Because the website is public and images can be saved, the process
of evolving interesting images is collaborative: new users can take
results produced by others and evolve them further. This system is
referred to as collaborative interactive evolution.

The recreation of Picbreeder in this paper is similar to the original,
but is not online and uses a different user interface. The details of
differences between the two implementations are in Section 3.3, and
a description of the new user interface is in Section 4.

2.2 Endless Forms
Endless Forms2 is another application of CPPNs that extends the
idea of Picbreeder to instead evolve three-dimensional objects [2].
Expanding the design space for CPPNs so that they can create objects
in three dimensions allowed for new explorations of the capabilities
of CPPNs. Endless Forms creates objects by querying CPPNs at
every voxel in a three-dimensional space at a certain resolution, and
then filling in a voxel if a CPPN output exceeds a certain numerical
threshold. After the voxels have been filled in, the object is processed
with the Marching Cubes algorithm [7], which smooths edges and
corners to create a more cohesive, less blocky shape. These objects
can then be evolved with an interface similar to that of Picbreeder.

Endless Forms is also an online collaborative evolution platform
with a web-based interface. The objects rotate within their display
buttons on the interface so that users can see them from multiple
angles. The objects in Endless Forms are a single color, but an
extension to Endless Forms using the same shape encoding added
the ability to assign different colors to each individual voxel, creating
multicolored 3D objects [6]. This extra color encoding is included
in the reimplementation of Endless Forms used in this paper. These
implementation details are discussed in Section 3.5.

3 METHODS
This section first describes the selective breeding algorithm used
to interactively evolve artistic artifacts. Then CPPNs are described,
followed by details on how they are used to evolve 2D images and
animations, as well as 3D shapes and animations.

3.1 Selective Breeding
In order to evolve interesting artistic artifacts, a simple evolutionary
algorithm similar to selective breeding is used. In each generation,
the user sees the population of N options available for selection. The
user can select M individuals as parents for the next generation, for
M < N . After selections are made, the M parents are directly copied
to the next generation, which is an example of pure elitist selection.
Remaining slots in the next generation are filled with offspring until
there are once again N members in the population.

Offspring are created by either randomly picking a single elite
parent to create a mutated clone of, or by picking two random parents
to crossover, before mutating the resulting child. The choice between
these two options is made probabilistically based on the crossover
rate. In the next generation, the selection process repeats with N
new options. This selective breeding algorithm could apply to any
representation, but CPPNs specifically are used in this paper.

2http://endlessforms.com

3.2 Compositional Pattern Producing Networks
CPPNs generate all artistic artifacts in this paper. A CPPN is a type
of artificial neural network with an arbitrary topology containing a
variety of activation functions with repetitive, symmetric, and asym-
metric patterns. These patterns are hallmarks of natural organisms.

CPPNs are typically evolved with NeuroEvolution of Augmenting
Topologies (NEAT [13]). NEAT evolves networks with arbitrary
topologies using three possible mutations: weight mutation perturbs
the weights of existing network connections, link mutation adds new
connections between existing nodes, and node mutation splices new
nodes along existing connections. Another key innovation of NEAT
is topological crossover based on historical markers.

CPPN nodes can each have a different activation function, so
every newly created node in a CPPN is assigned a randomly chosen
activation function from a set of human-specified options. This set
contains representatives of symmetric, periodic, and asymmetric
functions in order to mimic patterns seen in nature. To allow better
exploration of the space of possible functions, there is also a mutation
operation that swaps the activation function of a random node with
another randomly chosen activation function.

However, the main benefit of CPPNs is how they are applied: they
are repeatedly queried across a coordinate frame in order to define
an object within that frame as a function of its geometry. CPPN
inputs are locations in the coordinate frame, and the resolution of
the artifacts created depends on the proximity of adjacent query
points. Therefore, CPPNs can generate artifacts at arbitrarily large
resolutions, albeit at extra computational cost. Each program in this
paper encodes objects using a different coordinate frame.

3.3 Evolving 2D Images
The earliest example of encoding objects with CPPNs occurred in
2D space. In order to evolve images as in the original Picbreeder
[10], CPPNs generate a color for each pixel in an image. Specifically,
CPPNs take the current x and y pixel coordinates, the distance from
the image center, and a constant bias as input. The distance input is
not necessary to uniquely specify a pixel, but allows CPPNs to easily
create radial patterns. Image coordinates are scaled to the range
[−1, 1] along the x and y axes before input values are calculated.

The CPPN outputs are hue, saturation, and brightness (HSB) for
the pixel at the given coordinates. HSB color space is used because
the image shape only depends on brightness, whereas the color
depends on hue and saturation. Separation of these components al-
lows more stable progression across generations, because mutations
affecting only the shape or only the color are common.

HSB values must be in the range [0, 1], so the saturation output is
clamped to this range. However, final pixel brightness is the absolute
value of the brightness output clamped to this range, so there is only
a narrow range where crisp dark lines are rendered. The hue output is
clamped to [−1, 1], but then 1 is added to negative values in order to
derive the actual pixel hue. Allowing negative values in the first step
assures that activations transitioning between positive and negative
vary smoothly across a rainbow band of color.

The version of Picbreeder used in this paper is different from the
original version in that it is not a multi-user online collaborative
platform. However, this system can generate the exact same images
as the original program. Genomes from the original Picbreeder were

http://endlessforms.com

Querying Across Time to Interactively Evolve Animations GECCO ’18, July 15–19, 2018, Kyoto, Japan

Figure 1: Selected Frames Generated by a CPPN Evolved Using AnimationBreeder. Images from a particular 2D animation are shown at two-frame
intervals. The images highlight how the time input to a CPPN transforms an image over time. The complete, smooth animation can be seen online at
https://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php along with several other animations generated in the human subject study described
in Section 5.

made available as part of the CPPN Explorer project [4], and when
converted to be compatible with the version of Picbreeder in this
paper, identical images were produced. In fact, this system also
supports many activation functions not available in the original
Picbreeder, which are listed in Section 4. These additional functions
increase the expressive power of the evolved CPPNs.

3.4 Evolving 2D Animations
A technical contribution of this work is the extension of image gener-
ating CPPNs into animation generating CPPNs. In the past, CPPNs
have been queried exclusively in spatial coordinate spaces to create
static objects, but CPPNs can also be queried along a time coordinate.
Animations are created by having CPPNs generate different images
for each frame of animation. The program that evolves CPPNs with
this approach is called AnimationBreeder. Selected frames of an
example animation are shown in Fig. 1.

These CPPNs have the same outputs and inputs as Picbreeder, as
well as a new time input so that distinct images can be generated
at each frame of animation. As the time input increases, the output
of the CPPN changes, producing an animation. In order to generate
smooth transitions, the difference between subsequent time inputs
must be sufficiently small. Therefore, a standard of 24 frames per
second was used to determine the difference between subsequent
time inputs: 1/24. This frame rate is standard for most animation and
ensures smooth motion in generated animations. The first time input
for an animation is 0, but there is no bound on the growth of the time
input. Therefore, CPPNs can generate animations of arbitrary length
by increasing the time input enough times in small increments of
1/24, but lengthening the animation also increases the amount of
time it takes to generate the animation.

3.5 Evolving 3D Shapes
Beyond evolving 2D artifacts, this paper also studies programs that
evolve 3D artifacts. The program that evolves static 3D shapes is

based off of Endless Forms [2], but is called 3DObjectBreeder for
clarity, and because of slight differences between the two programs.

To evolve shapes with a CPPN, inputs for x, y, and z coordinates
designating specific voxels within a 10 × 10 × 15 volume are used.
The distance of each voxel from the center of the cuboid is also
provided, along with a constant bias. The voxel is determined to be
present if a designated output exceeds a threshold of 0.1, in which
case a cube is rendered at the designated location. The combination
of cubes results in interesting shapes.

The process above allows for the evolution of 3D shapes in a man-
ner similar to the original Endless Forms. However, Endless Forms
also applied the Marching Cubes algorithm [7] to smooth the blocky
shapes encoded by the CPPNs. This smoothing enhancement is not
yet applied in 3DObjectBreeder, though such functionality could
be added in the future. Currently, the generated shapes are blocky,
but still visually interesting. Some enhancements also distinguish
3DObjectBreeder from the original Endless Forms.

Specifically, 3DObjectBreeder expands on the capabilities of
the original Endless Forms in the two ways. First, each voxel in
3DObjectBreeder can have its own color by obtaining HSB values
from designated CPPN outputs. The addition of color variation
between voxels has been explored previously [6], but not using
interactive evolution. 3DObjectBreeder’s second enhancement over
Endless Forms is the ability of each voxel to be displaced slightly
from its prescribed location. As a result, voxels are not confined to a
rigid grid. Specifically, the CPPN has separate outputs for displacing
a voxel along the x, y, and z axes. The maximal displacement allowed
pushes the centroid of the voxel to the original voxel boundary. In
other words, CPPN outputs for displacement are scaled to be within
[−v/2,v/2] where v = 10 is the length of each edge of a voxel.

The above procedure generates static 3D shapes in a manner
distinct from Endless Forms, yet interesting in its own right. As in
Endless Forms, the 3D shapes rotate so that they can be viewed from
multiple angles, but despite this animation, the shapes themselves
are static. However, the actual representation of the 3D shapes can
also be animated.

https://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php

GECCO ’18, July 15–19, 2018, Kyoto, Japan Isabel Tweraser, Lauren E. Gillespie, and Jacob Schrum

Figure 2: Selected Frames Generated by a CPPN Evolved Using 3DAnimationBreeder. Images from a particular 3D animation are shown at two-frame
intervals. The images highlight how the time input to the CPPN adds and subtracts voxels from a shape over time, in addition to changing their colors. Voxels can
also wiggle within certain bounds. The complete, smooth animation can be seen at https://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php
along with several other animations generated in the human subject study described in Section 5.

3.6 Evolving 3D Animations
To create 3D animations, the same method was applied that was used
to extend Picbreeder into AnimationBreeder. A time input was added
to each CPPN, so that CPPNs could be queried across time to create
multiple outputs displayed at 24 frames per second. The program that
generates these animations is called 3DAnimationBreeder. Selected
frames of an example animation can be seen in Fig. 2.

Because the CPPN outputs determine the presence/absence of
voxels, and also their displacement, the resulting animations often
contain interesting visual rippling effects or cyclic construction and
deconstruction of the shape. The colors of voxels can also change,
further enhancing the allure of the animations. Although all of these
aspects of the shape can vary at once, it can be particularly interesting
to see certain aspects changing while others remain fixed or vary
only subtly. Static shapes can have interesting color patterns dancing
along their surfaces, and shapes with solid colors can undulate or
disintegrate before the user’s eyes. If the user prefers, then all of
these aspects can vary wildly at once, creating chaotic results.

Because the animations increase the amount of activity in the
visualizations, the 3D animations do not rotate as the static 3D
shapes do, though rotations could easily be enabled. Therefore, all
perceived movement is purely due to the CPPN. However, the user
interface does allow 3D animations to be viewed from different
angles, as described in the next section on the user interface.

4 USER INTERFACE
The interface is based on those used in Picbreeder and Endless
Forms. Every interface includes an Evolve button, which is how
users advance to the next generation. Users select and unselect items,
then click Evolve to go to the next generation. There is also an Undo
button to go back one generation, a Restart button for initializing
a new population, and a Save button to save a copy of an evolved
artifact. All interfaces also contain a slider for changing the number
of mutation chances per offspring on a scale of 1 to 10. This slider
offers better control over evolution: the low end allows users to finely

control evolution by making only small changes to the population,
while the high end allows the users to explore the search space more
rapidly and evolve distinct artifacts in fewer generations. These
features are sufficient to interactively evolve novel artifacts, but
the interface also includes additional features that give users more
control over artifact evolution.

One addition is checkboxes corresponding to each available ac-
tivation function. By clicking or unclicking a box, the specified
activation function is added to or removed from the set of activa-
tion functions that can be introduced when mutations that splice
a new node or change an existing activation function occur. The
activation functions available on the interface are sigmoid (full and
half), Gaussian (full and half), cosine, sine, identity (unbounded, and
clamped to [0, 1] and [−1, 1]), absolute value, square wave, triangle
wave, sawtooth (full and half), and rectified linear units. Full versions
of functions are stretched to the range [−1, 1], while half versions are
confined to [0, 1]. These additional functions make the emergence
of patterns not seen in previous work possible, which is especially
true of the functions with sharp corners and discontinuities.

All interfaces also include a button to view the CPPNs generating
each artifact instead of the artifacts themselves. Viewing the CPPNs
allows users to see differences between not just the artistic pheno-
types, but also their genotypes. A user can therefore focus on the
presence of particular activation functions and/or structures.

Finally, each interface has checkboxes corresponding to each
input in the CPPN. Clicking and unclicking these boxes enables
and disables the chosen inputs (Fig. 3). Disabled inputs have a fixed
value of 0 every time the CPPN is queried, allowing the user to
explore the effect of each input on the phenotype. Despite the depth
of analysis in both the original Picbreeder paper [10] and the recent
CPPN Explorer paper [4], this input-disabling option is a new way
to understand how CPPNs construct interesting artifacts.

The above features are common to all programs developed in this
paper. On top of these features, the AnimationBreeder, 3DAnima-
tionBreeder and 3DObjectBreeder interfaces each have additional

https://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php

Querying Across Time to Interactively Evolve Animations GECCO ’18, July 15–19, 2018, Kyoto, Japan

(a) all inputs (b) x disabled (c) y disabled (d) center distance
disabled

(e) only x and bias (f) only y and bias (g) only center
distance and bias

(h) only bias

Figure 3: Same CPPN Generating Images With Different Inputs. In all interactive evolution interfaces, the user can disable CPPN inputs, so that they use a
default value of 0 whenever queried. All of these images are generated by the same CPPN with (a) all CPPN inputs, (b) x-coordinates disabled, (c) y-coordinates
disabled, (d) distance from center of image disabled, (e) only x-coordinates and the bias enabled, (f) only y-coordinates and the bias enabled, (g) only distance
from center of image and the bias enabled, and (h) only the bias enabled. Exploring the input space to the CPPNs not only helps to generate new interesting
results, but also allows one to better understand how the geometry of the input space affects the CPPN outputs. The input space of 3D and animated artifacts can
be explored in a similar manner.

features. In the two animation programs, there is a slider that con-
trols the length of the animation from 10 to 250 frames. Another
slider allows the user to add pauses between frames to facilitate
viewing of each individual frame. This slider ranges from 10 to 50
milliseconds. Finally, another slider controls the pause between the
end of an animation and the next playback, since animations cycle
repeatedly. This slider also ranges from 10 to 50 milliseconds. These
options allow users to better inspect their animations.

The 3DObjectBreeder interface contains several special features.
Although 3DObjectBreeder evolves static shapes, the interface de-
picts an animation of the shapes rotating. Therefore, a slider control-
ling the pause between frames is included. There is also a dropdown
to assign a fixed color to all evolved shapes as in Endless Forms, or
use the evolved CPPN to define voxel coloring as described in Sec-
tion 3.5. Another dropdown selects between vertical and horizontal
rotation axes, to allow better views of the evolved shapes.

The 3DAnimationBreeder also has special features. Because its
animations do not rotate, there are sliders that adjust the fixed angle
of vertical and horizontal rotation the animation is viewed from.

Overall, the interface helps users explore their creations and pick
the most pleasing artwork to evolve. Videos of interaction with the
interfaces are at http://people.southwestern.edu/~schrum2/SCOPE/
EvolvedArt/cppnart.php, and source code can be downloaded from
https://github.com/schrum2/CPPNArtEvolution.

The rich interfaces described thus far allow an experienced user to
have a great deal of control over the evolution of interesting artifacts.
However, in order to directly study the benefit of introducing a time
input to generate animations, a simplified interface is used for the
purposes of a human subject study.

5 HUMAN SUBJECT STUDY
This section describes the procedure and results of the human subject
study comparing still and animated programs.

5.1 Procedure
To gauge user response to these newly created systems, a human
subject study was conducted in which 40 people interacted with
the systems and gave feedback on a survey afterward. There were
two different studies, each with 20 distinct participants. In the first
study, users interacted with Picbreeder and AnimationBreeder. In
the second study, users interacted with 3DObjectBreeder and 3DAn-
imationBreeder. Advanced features of the interface were disabled

for the study. Only the slider controlling mutation chances and the
Evolve button for progressing to the next generation were available.

The following settings were common across all four programs.
Users interacted with each program for fifteen generations, with a
population of 20 CPPNs. The activation functions available to the
CPPNs were the sigmoid (half), Gaussian (half), sine, sawtooth (half
and full), identity clamped to [0, 1], triangle wave, and square wave
functions. For each new offspring, the chance of crossover was 50%.
Once created, the offspring could have 1 to 10 chances of mutation,
depending on the current slider setting chosen by the user. For each
mutation chance, the rate of activation function change was 30%,
the per link weight perturbation rate was 5%, the link creation rate
was 40%, and the node splice rate was 20%.

For AnimationBreeder and Picbreeder, feature selection was en-
abled, meaning that each initial CPPN had only one incoming link
per output neuron [14]. Feature selection makes the initial pictures
and animations very simple, which means that users can generally
observe a large increase in complexity over the course of a session.
For AnimationBreeder, the animation length was 50 frames.

For 3DObjectBreeder and 3DAnimationBreeder, the animation
length was 72 frames and feature selection was disabled, so that every
input neuron connected to every output neuron. Feature selection was
disabled in the 3D programs because it hindered evolution too much,
by making it difficult to evolve beyond boring initial shapes. The
number of animation frames is different because 3DObjectBreeder
requires 72 frames of animation to produce a smooth, 360 degree
rotation of evolved shapes. Although 3DAnimationBreeder does not
display rotating shapes, it also uses 72 frames of animation for fair
comparison with the 3DObjectBreeder.

In each session, subjects evolved artifacts for 15 generations with
one program, and then 15 generations with the other program. Half
of the users were exposed to an animating program first and half
used the animating program second, to ensure that the order of
exposure did not systematically affect the results. After interaction
with both programs was completed, users filled out a survey that
compared the two programs. They were asked which program they
preferred, and to compare and describe their favorite final results
from each program. They rated their enjoyment of each program,
the complexity of their final results, and how aesthetically pleasing
their final results were on a scale of 1 to 5. They were also asked
to briefly describe their thought process when selecting artifacts to
evolve to subsequent generations.

http://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php
http://people.southwestern.edu/~schrum2/SCOPE/EvolvedArt/cppnart.php
https://github.com/schrum2/CPPNArtEvolution

GECCO ’18, July 15–19, 2018, Kyoto, Japan Isabel Tweraser, Lauren E. Gillespie, and Jacob Schrum

5.2 Quantitative Results
In both the 2D and 3D studies, more users preferred animated pro-
grams and results over the still counterparts (Table 1). Over three
times as many users preferred AnimationBreeder over Picbreeder,
but only one more user preferred the final AnimationBreeder result
over the final Picbreeder result. For 3D programs and results, at least
twice as many users preferred animation over the still counterparts.

Samples for the individual 20 user studies are too small to com-
pute statistically significant results. Additionally, users could indi-
cate equal preference for both options, but it is unclear what value to
assign to this option under a null hypothesis. Therefore, results from
both studies are pooled into a single sample of size 40 to determine
preference between still and animated programs, and a sample of
size 39 to determine preference between still and animated final
results (one user failed to answer this question on the survey). Ties
are split evenly between the two choices, with extra votes given to
the still programs, since this approach is more conservative than
discarding tie votes. These processed results are compared with a
one-sided binomial test, which indicates that users significantly pre-
fer animated programs over still programs (p ≈ 0.01924), but that
there is no statistically significant difference in preference for final
animated results over final still results (p ≈ 0.2612).

Table 2 shows users’ rankings of their enjoyment of each of the
four programs. Users enjoyed animated programs more than still
programs, but generally gave high marks to both. When the 2D and
3D results are pooled to create a larger sample (n1 = n2 = 40), a
Wilcoxon-Mann-WhitneyU Test reveals that the animation programs
are ranked higher than the still programs by a statistically significant
amount (U = 602,p ≈ 0.04141). To account for the high number
of ties in the data, the EDISON-WMW algorithm [8] was used to
compute precise p-values.

Table 3 displays users’ rankings of the complexity of their final
results from each of the four programs. The results show a wide vari-
ety of ratings across each of the programs, though most tend toward
middling ratings. However, pooling the 2D and 3D results reveals
that users rank the 3D results as more complex by a statistically
significant amount (U = 547.5,p ≈ 0.011205).

Table 4 shows user ratings for the aesthetic appeal of their final
results. Interestingly, most users found still 2D images more ap-
pealing than 2D animations. However, 3D animations were more
appealing than still 3D shapes. These opposite outcomes for the 2D
and 3D comparisons mean that there is no significant difference be-
tween still and animated aesthetic appeal in the pooled comparison
(U = 815,p ≈ 0.87871).

In summary, the quantitative results indicate that users prefer ani-
mation programs and find them more enjoyable. They also find the
results of the animation programs more complex, but not necessarily
more aesthetically appealing. Their preference between the final ani-
mations and final static results is unclear. Analysis of the qualitative
results gives further insight into these quantitative findings.

5.3 Qualitative Results
Users were asked to describe what their favorite result from the
final generation of each program looked like. Many users described
the specific color and movement patterns, but some saw interesting
shapes and images within the artifacts. For the three-dimensional

Table 1: User Preferences.
Comparison Still Animated Equal

2D programs 15%(3) 55%(11) 30%(6)
2D results 45%(9) 50%(10) 5%(1)

3D programs 25%(5) 60%(12) 15%(3)
3D results 26.3%(5) 52.6%(10) 21.1%(4)

User preferences are shown for still and animated programs, and the final
favorite results produced with these programs. Users could indicate that they
favored one option over the other, or that they had equal preference for both.
The integers in parentheses indicate the number of people who chose each
response. For the comparison of 3D results, one user failed to answer the
question, so percentages are computed out of 19 responses, rather than 20.

Table 2: User Enjoyment
Rating 1 2 3 4 5

2D still 0%(0) 5%(1) 5%(1) 60%(12) 30%(6)
2D animated 0%(0) 0%(0) 10%(2) 30%(6) 60%(12)

3D still 10%(2) 0%(0) 30%(6) 35%(7) 25%(5)
3D animated 0%(0) 5%(1) 15%(3) 40%(8) 40%(8)

User ratings of their enjoyment of each program on a scale of 1 to 5, showing
both percentages and exact numbers. Both types of animations are preferred
over still artifacts, though 2D programs are rated higher than 3D programs.

Table 3: Complexity of Final Results
Rating 1 2 3 4 5

2D still 5%(1) 10%(2) 45%(9) 25%(5) 15%(3)
2D animated 5%(1) 5%(1) 10%(2) 45%(9) 35%(7)

3D still 0%(0) 30%(6) 50%(10) 5%(1) 15%(3)
3D animated 5%(1) 20%(4) 15%(3) 40%(8) 20%(4)

User ratings of the complexity of their favorite final result from each program
on a scale of 1 to 5, showing both percentages and exact numbers. Animations
are found to be more complex that their still counterparts.

Table 4: Aesthetic Appeal of Final Results
Rating 1 2 3 4 5

2D still 0%(0) 5%(1) 5%(1) 25%(5) 65%(13)
2D animated 0%(0) 5%(1) 10%(2) 50%(10) 35%(7)

3D still 0%(0) 5%(1) 20%(4) 45%(9) 30%(6)
3D animated 5%(1) 0%(0) 5%(1) 40%(8) 50%(10)

User ratings of the aesthetic appeal of their favorite final result from each
program on a scale of 1 to 5, showing both percentages and exact numbers.
Although 3D animations are more appealing than still 3D shapes, users found
still 2D images to be more aesthetically appealing than 2D animations.

programs, users said they were reminded of items such as “a fleet
of spaceships” (Fig. 4l), a “castle on a hill” (Fig. 4j), “cake”, and
“a beating heart” (Fig. 4o). However, most of the 3D objects and
animations were described as colorful cuboids or a construction of
tiny cubes that moved around. Because Marching Cubes was not
used to smooth the final shapes, the 3D objects look blocky because
the individual cubes used to construct the objects are visible.

For the two-dimensional programs, interesting shapes were more
readily noticed. Some notable descriptions are a “sunset” (Fig. 4a), a
“creature peeking out from behind a curtain” (Fig. 4b), a “tribal shield”
(Fig. 4c), a “peppermint stick” (Fig. 4d), a “cute alien blowing bubble
gum” (Fig. 4e), an “eclipse or wormhole” (Fig. 4n), “HypnoToad
from Futurama” (Fig. 4g), and “a weird toy animal that pops out

Querying Across Time to Interactively Evolve Animations GECCO ’18, July 15–19, 2018, Kyoto, Japan

(a) “sunset” (b) “creature
peaking out from
behind a curtain”

(c) “tribal shield” (d) “peppermint
stick”

(e) “cute alien
blowing bubble

gum”

(f) “eclipse or a
wormhole”

(g) “Reminded me of
HypnoToad (from

Futurama)”

(h) “weird toy
animal”

(i) shape cracked in
two

(j) “castle on a hill” (k) “four right
triangles”

(l) “fleet of space
ships”

(m) “moving
gradient of colors”

(n) shrinking orb in
a cage

(o) “beating heart” (p) growing and
shrinking red sticks

Figure 4: Selected Items Generated by Human Subjects. All items shown were generated by users in the human subject study. Images (a)–(d) show still
images from Picbreeder. Images (e)–(h) are individual frames from different animations evolved by AnimationBreeder. Images (i)–(l) are shapes evolved by
3DObjectBreeder shown from a particular point of view. Images (m)–(p) are individual frames from different animations evolved by 3DAnimationBreeder.
Double quotes indicate the text was provided by a human subject. These images show the diversity of results that different users produced, and the user
descriptions demonstrate how even abstract art can evoke imaginative descriptions with references to real-world objects.

at you” (Fig. 4h). Many described their images and animations as
resembling eyes and rainbows. Circular shapes are easy to generate
thanks to the distance from center input given to CPPNs. Rainbow
patterns are a side effect of using the HSB color encoding, because
as hue varies, the colors of the rainbow are traversed.

Most of the users said that they enjoyed the programs overall,
and liked being able to breed certain patterns over time based on
the images that they clicked, but some people were disheartened by
the long loading time for the animations. One user in particular said
that the study was “fun but took forever”. Having a slow-loading
system can contribute to user fatigue. This long loading time is
not indicative of interacting with the program regularly. The human
subjects experienced a slower version of the programs because of the
need to save all of the artifacts that users clicked for each generation,
which slowed down the programs considerably. Some users also said
that the three-dimensional animations made them feel physically
uncomfortable and strained their eyes. This is a potential cause for
concern and could contribute to user fatigue as well, but was to be
expected because of the disjointed movements and flashing colors
of some of the animations, and because of the fact that so many
animations are displayed on the interface simultaneously.

6 DISCUSSION AND FUTURE WORK
The art interactively evolved by human subjects and their responses
to survey questions show that introducing time to evolve animated
versions of artistic artifacts results in complex and enjoyable results.
Creating animated artifacts from still artifacts adds a new element
of intrigue and complexity that builds upon the original Picbreeder
and Endless Forms, thus opening new avenues of exploration for
interactive evolution using CPPNs.

Although users preferred using the animation generating pro-
grams, they sometimes preferred their static final results more then
their animations. User comments provide potential explanations for
these findings. For example, some users lost art that they enjoyed

more than the results in their final generation because they stopped
selecting their preferred art in favor of new, novel items. If the users
were not keeping track of the number of generations passed, the pro-
gram could terminate suddenly with potentially displeasing results
for the user. Therefore, users may have enjoyed the many animated
results that were produced more than the static results, but were
coincidentally left with final animated results that they did not appre-
ciate as much. An extreme case of this is a user that was intrigued
by the unexpected appearance of an completely empty space when
evolving 3D animations. Unfortunately, the user selected only this
option, and was thus left with a final result that, while novel, was
neither complex nor pleasing. A better understanding of how the
system works, specifically the fact that selection is elitist, could
remedy this problem. The Undo button available in the full program
interface would also help address this problem.

In the 2D case specifically, users found the still results more
aesthetically appealing. This outcome may be related to the use of
feature selection [14] in network initialization. If the time input is
underutilized, then AnimationBreeder will produce still images, or
animations with very little movement. There are several users whose
final AnimationBreeder results are not animated. Starting evolution
with fully connected networks, as was done with the 3D programs,
would increase the occurrence of interesting animations.

Although some users likened their creations to real-world ob-
jects, observation of all final results indicates that most of the art
produced is quite abstract, in contrast to prominent results from
the original Picbreeder and Endless Forms. This discrepancy arises
because Picbreeder and Endless Forms are online and collabora-
tive, so multiple users can further evolve the results of others. In
contrast, there is a limit to what a single user can evolve within 15
generations. However, the use of genomes from the CPPN Explorer
project [4] validates the expressive capacity of the CPPNs used in
this paper, and extended use of these programs by the authors has led
to many interesting artifacts more complex than what users from the

GECCO ’18, July 15–19, 2018, Kyoto, Japan Isabel Tweraser, Lauren E. Gillespie, and Jacob Schrum

study produced. However, these users still found interesting ways to
describe the artifacts they generated (detailed in Section 5.3).

Some users were overwhelmed when evolving animated artifacts.
Because there were 20 buttons containing moving multicolored
artifacts, AnimationBreeder and 3DAnimationBreeder are highly
visually stimulating. In fact, some users thought that the animated
programs were too visually stimulating and strained their eyes, so
an option was added to the code after the human subject study
restricting animations to only occur on the item the user’s mouse
is hovering over. Some participants got worn out by occasionally
long waiting times between generations. Although user fatigue is a
common issue in interactive evolution, this issue was exacerbated in
the study by the need to save all results produced by the users, and
is not an inherent problem with the programs. Although there are
ways that the code could be optimized to be faster, waiting times are
generally not a problem on modern machines.

As previously discussed, the 3D artifacts of this paper were dif-
ferent from those of the original Endless Forms because they remain
blocky instead of being smoothed. If the code were adapted to make
use of hardware accelerated graphics libraries, then the application
of the Marching Cubes algorithm for smoothing would be relatively
straightforward. It would be interesting to see how the Marching
Cubes algorithm would affect 3D animations. Animations might also
be enhanced by the use of shaders for both 3D and 2D animations.

Incorporation of sound into generated animations might also
produce interesting results. Specifically, a sound wave could be used
with or instead of a time input to generate a 2D or 3D animation,
so that the animation is synchronized with the sound, resulting in
interesting audio visualizations. An audio signal can be thought of
as a function of time, but other functions of time could also be used
as CPPN inputs. Alternatively, one CPPN could generate a sound
(as with Breedesizer [5]) in addition to an animation, which would
provide another way to synchronize audio and visual components.
In short, there are many ways to use the concept of time to augment
artistic generation by CPPNs.

There are also possible applications beyond artistic artifacts. Time
can be incorporated into the CPPN generation of soft robots [1] to
perhaps introduce a form of aging. Neural networks generated by
CPPNs via HyperNEAT [12] could also depend on a time input,
so that the substrate network defining the policy of an agent in a
sequential decision making problem could change throughout the
course of evaluation. Having a soft body or policy that changes dur-
ing an agent’s lifetime could be useful in domains where goals or
the environment change in drastic ways throughout the course of
evaluation. In fact, there could even be CPPN inputs that are derived
from the phenotype network making decisions in the environment,
which would allow network structure to adapt not only over time, but
in response to specific environmental stimuli. This notion has con-
nections to the concept of neural plasticity, which have already been
explored using HyperNEAT [9]. There is also a related approach,
known as HyperNetworks [3], that have been used to generate recur-
rent networks whose weights change over time in order to generate
text and handwriting sequences. These general ideas could also be
applied in sequential decision making problems.

7 CONCLUSION
CPPNs are capable of generating diverse original images and objects.
However, time had not previously been incorporated into interactive
evolution to create animating images and moving objects. Adding
time as an input to a CPPN allowed previously established programs
(Picbreeder and Endless Forms) to be expanded on in new and
exciting creative ways, generating results that are enjoyable to watch
and visually complex. According to a human subject study that
directly compared these animated programs to their still counterparts,
users found the animated programs to be more enjoyable than the still
programs. Despite some issues with the graphical interface, the new
animated programs, AnimationBreeder and 3DAnimationBreeder,
produce results that are visually interesting and intricate. In the
future, time can be applied to other applications of CPPNs, such as
soft robots and neural networks.

ACKNOWLEDGMENTS
The authors would like to thank Joost Huizinga for his help under-
standing the Picbreeder genomes from the CPPN Explorer project.
This research is supported in part by the Summer Collaborative Op-
portunities and Experiences (SCOPE) program for undergraduates,
funded by various donors to Southwestern University.

REFERENCES
[1] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. 2013. Unshack-

ling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful
Generative Encoding. In Genetic and Evolutionary Computation Conference.

[2] Jeff Clune and Hod Lipson. 2011. Evolving Three-dimensional Objects with a
Generative Encoding Inspired by Developmental Biology. In European Conference
on Artificial Life. 141–148.

[3] David Ha, Andrew Dai, and Quoc V. Le. 2017. HyperNetworks. In International
Conference on Learning Representations.

[4] Joost Huizinga, Kenneth O Stanley, and Jeff Clune. 2017. The Emergence of
Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System.
arXiv preprint arXiv:1704.05143 (2017).

[5] Björn Þór Jónsson, Amy K. Hoover, and Sebastian Risi. 2015. Interactively
Evolving Compositional Sound Synthesis Networks. In Genetic and Evolutionary
Computation Conference. 321–328.

[6] Joel Lehman, Sebastian Risi, and Jeff Clune. 2016. Creative Generation of 3D
Objects with Deep Learning and Innovation Engines. In International Conference
on Computational Creativity.

[7] William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. In Conference on Computer
Graphics and Interactive Techniques. 163–169.

[8] Alexander Marx, Christina Backes, Eckart Meese, Hans-Peter Lenhof, and An-
dreas Keller. 2016. EDISON-WMW: Exact Dynamic Programing Solution of the
Wilcoxon-Mann-Whitney Test. Genomics, Proteomics & Bioinformatics 14, 1
(2016), 55–61.

[9] Sebastian Risi and Kenneth O. Stanley. 2012. A Unified Approach to Evolving
Plasticity and Neural Geometry. In International Joint Conference on Neural
Networks. 1–8.

[10] Jimmy Secretan, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez,
Adam Campbell, Jeremiah T. Folsom-Kovarik, and Kenneth O. Stanley. 2011.
Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design
Space. Evolutionary Computation 19, 3 (2011), 373–403.

[11] Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines 8, 2
(2007), 131–162.

[12] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A Hypercube-
based Encoding for Evolving Large-scale Neural Networks. Artificial Life (2009).

[13] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evolutionary Computation 10 (2002), 99–127.

[14] Shimon Whiteson, Peter Stone, Kenneth O. Stanley, Risto Miikkulainen, and
Nate Kohl. 2005. Automatic Feature Selection in Neuroevolution. In Genetic and
Evolutionary Computation Conference. ACM.

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Picbreeder
	2.2 Endless Forms

	3 Methods
	3.1 Selective Breeding
	3.2 Compositional Pattern Producing Networks
	3.3 Evolving 2D Images
	3.4 Evolving 2D Animations
	3.5 Evolving 3D Shapes
	3.6 Evolving 3D Animations

	4 User Interface
	5 Human Subject Study
	5.1 Procedure
	5.2 Quantitative Results
	5.3 Qualitative Results

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

