
Evolving Indirectly Encoded Convolutional Neural Networks
to Play Tetris With Low-Level Features

Jacob Schrum
Department of Math and Computer Science, Southwestern University

Georgetown, Texas
schrum2@southwestern.edu

ABSTRACT
Tetris is a challenging puzzle game that has received much attention
from the AI community, but much of this work relies on intelligent
high-level features. Recently, agents played the game using low-level
features (10 × 20 board) as input to fully connected neural networks
evolved with the indirect encoding HyperNEAT. However, research
in deep learning indicates that convolutional neural networks (CNNs)
are superior to fully connected networks in processing visuospatial
inputs. Therefore, this paper uses HyperNEAT to evolve CNNs. The
results indicate that CNNs are indeed superior to fully connected
neural networks in Tetris, and identify several factors that influence
the successful evolution of indirectly encoded CNNs.

CCS CONCEPTS
• Computing methodologies → Neural networks; Generative and
developmental approaches;

KEYWORDS
Games, Tetris, Indirect encoding, Neural networks

ACM Reference Format:
Jacob Schrum. 2018. Evolving Indirectly Encoded Convolutional Neural
Networks to Play Tetris With Low-Level Features. In GECCO ’18: Ge-
netic and Evolutionary Computation Conference, July 15–19, 2018, Kyoto,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3205455.
3205459

1 INTRODUCTION
Tetris is a challenging game that has received much attention from
the AI community [15, 17, 27, 36, 37], but nearly all of this research
relies on the use of a small set of high-level features. Deep Reinforce-
ment Learning (deep RL [23]) would seem well-suited to succeeding
in this domain using low-level features, but despite current interest
in deep RL, there are almost no published papers in which the full
game of Tetris is played using low-level features.

A notable exception is a paper applying the evolutionary indirect
encoding HyperNEAT [30] to Tetris [16] rather than stochastic gra-
dient descent (SGD). Although the HyperNEAT afterstate evaluators

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205459

Figure 1: Tetrominoes. The seven tetrominoes in Tetris, named using
the letters they most closely resemble: Z, S, L, J, T, O, I.

evolved in this paper far surpassed those evolved with the direct en-
coding NEAT [31], there is still room for improvement. In particular,
the HyperNEAT networks used a fully connected architecture with a
single hidden layer. In contrast, this current paper uses HyperNEAT
to indirectly encode convolutional neural networks (CNNs) [21],
which have risen to prominence with the success of Deep Learning.

HyperNEAT has been used to purposefully [38] and inadvertently
[13] encode CNNs before, for supervised and unsupervised tasks
respectively, but these applications relied on SGD in addition to
evolution. This paper uses HyperNEAT to generate CNNs for a
Reinforcement Learning task without any use of SGD.

Experiments are conducted comparing evolved CNNs to fully
connected networks in Tetris, and the results indicate that shallow
CNN scores surpass those of the best fully connected networks
by an order of magnitude. However, despite the high performance
of the evolved CNNs, HyperNEAT struggles to evolve effective
deep architectures with either type of connectivity pattern. After
discussing these results, the paper concludes by proposing several
approaches for enhancing evolution’s performance in the future.

2 TETRIS
Tetris was created in 1989 by Russian game designer Alexey Pajitnov.
It is an extremely popular puzzle game that has been repeatedly re-
released on many platforms. Its relatively simple game mechanics
combined with its large state space make it both an interesting and
challenging domain. This section discusses the gameplay of Tetris,
followed by a review of previous research in this domain.

2.1 Gameplay
In the game of Tetris, pieces called tetrominoes (Figure 1), that
are various configurations of four blocks, are randomly selected to
slowly fall one by one from the top of the screen. As a piece falls,
the player can move it from side to side and rotate it in order to
move it into a desirable position. The player seeks to completely fill
horizontal rows of a 10 block wide and 20 block high board with
blocks from the tetrominoes. Sometimes, placement of a piece can
create holes, which are open spaces with at least one block above
them. Some holes can be filled by moving in a piece from the side
as it falls, but holes can also become completely covered by falling

https://doi.org/10.1145/3205455.3205459
https://doi.org/10.1145/3205455.3205459
https://doi.org/10.1145/3205455.3205459

GECCO ’18, July 15–19, 2018, Kyoto, Japan Jacob Schrum

pieces. The accumulation of holes should be avoided since they
prevent rows from being filled. When a row is completely filled, the
row disappears and all blocks above it are shifted down one space. It
is possible to clear multiple rows at once, and the clearing of rows
earns points. In the implementation used in this paper (from RL-Glue
[35]), one, two, four or eight points are earned for simultaneously
clearing one, two, three or four lines, respectively. Play continues
until the blocks reach the top of the screen, at which point the game
is lost. The goal is to maximize the score, but this goal is tied to the
goal of playing for as long as possible.

Tetris is hard because it is impossible to place all pieces in a way
that will not eventually lead to a loss, since the Z and S shaped
tetrominoes assure the eventual termination of every game [5]. Fur-
thermore, Tetris is an NP-complete problem, even when the player
knows the identity and order of all the pieces [4]. Some Tetris imple-
mentations allow the player to know the next piece to fall, but agents
in this paper are only aware of the current piece. Work developing
intelligent controllers to play Tetris is described next.

2.2 Previous Research
Beyond being a widely popular game, Tetris is also a popular AI
benchmark. An early approach to Tetris was that of Bertsekas and
Ioffe [1], known as λ-Policy Iteration. This work is most influen-
tial for the high-level features it introduced: the individual column
heights, the differences between adjacent columns, the maximum
height across columns, and the number of holes on the board.

Many RL algorithms have been applied to Tetris using these or
similar features. All of these approaches define state-value functions
that consider what the board would look like after each possible
placement of the current piece. For example, the noisy cross-entropy
method [33] performed one hundred times better than the original
results of Bertsekas and Ioffe. Approximate Dynamic Programming
later matched this performance with fewer samples [15]. Tetris was
also a domain in the 2008 RL Competition [40]. The winning ap-
proach was an extension of the cross entropy method [37].

Recently, record-breaking results were achieved in 10 × 10 Tetris
(half board size) and SZ-Tetris (only S and Z pieces are available
[34]) with an approach in which multiple learning runs execute in
parallel to adapt hyperparameters for TD(λ) [11]. This approach is
like evolution, in that the different parallel runs are competing to
promote their set of hyperparameters for use during learning.

More straight-forward variants of evolutionary computation have
also been applied to Tetris. Examples include the evolution of
weights for a linear function approximator [2] and an application
of CMA-ES [3]. A recent approach explores both evolved heuris-
tics, neural networks trained with SGD, and combination of both
approaches [14], but once again uses a set of high-level features.

The most relevant work to this paper is the previously mentioned
application of HyperNEAT using low-level features [16]. Unlike
much work in deep RL [23], this work did not use raw pixel inputs,
but did use simple binary features based on the presence/absence
of blocks in the 10 × 20 game board. The same features are used in
the current paper (Section 4.2). In the previous paper, NEAT and
HyperNEAT evolved afterstate evaluators for Tetris using low-level
or high-level features. NEAT was slightly, though not significantly,
better than HyperNEAT with high-level features, but HyperNEAT

was vastly superior to NEAT when using low-level features. One
goal of the current paper is to surpass this previous HyperNEAT
result by encoding CNNs instead of fully connected networks.

There are also applications of deep RL with TD(λ) to SZ-Tetris
using similar low-level features as input to an afterstate evaluator [10,
12]. These results are impressive, but cannot be directly compared to
results in the full game. Also, these results relied on a special shaping
reward not based on the game score. The current paper depends on
using evolution to maximize game score and trial duration.

3 EVOLUTIONARY ALGORITHMS
This section explains the two versions of HyperNEAT [30] used in
this paper: the original fully connected version (Full-HyperNEAT)
and a new version that creates convolutional neural networks (CNN-
HyperNEAT). Both versions extend the original NEAT [31], but use
the multiobjective evolutionary algorithm NSGA-II [9] for selection.
Code from all experiments is available as part of MM-NEAT1.

3.1 NSGA-II
The Non-Dominated Sorting Genetic Algorithm II (NSGA-II [9]) is
a Pareto-based multiobjective evolutionary optimization algorithm.
NSGA-II makes the use of both game score and trial duration as
separate objectives straight-forward, because no weighting of dif-
ferent objectives is necessary. The final results are still evaluated
entirely in terms of game score, which is the main objective of inter-
est. However, because multiple objectives are used during evolution,
a principled way of dealing with them is needed.

NSGA-II uses the concepts of Pareto Dominance and Pareto
Optimality to sort a population into Pareto layers according to their
objective scores. Each layer consists of networks whose scores are
not Pareto dominated by scores of other networks in the same layer,
or lower layers. One score only dominates another if it is at least
as good in all objectives, and strictly better in at least one objective.
Thus, the layer whose scores are not dominated by any scores in the
population (the Pareto front) consists of the best individuals, which
are most worthy of selection and reproduction. Individuals in the
layer beneath this one are second-best, and so on.

NSGA-II uses (µ + λ) elitist selection favoring individuals in
higher layers over lower layers. In the (µ + λ) paradigm, a parent
population of size µ is evaluated, and then produces a child popula-
tion of size λ. Selection on the combined parent and child population
creates a new parent population of size µ. NSGA-II uses µ = λ. To
break ties among individuals in the same layer, crowding distance
[9] favors solutions in sparsely occupied regions of that layer.

NSGA-II provides a way to select the best solutions based on mul-
tiple objectives. NSGA-II is used to evolve artificial neural networks
using HyperNEAT, which is based on the original NEAT.

3.2 NEAT
NeuroEvolution of Augmenting Topologies (NEAT [31]) is a direct
encoding neuroevolution algorithm that evolves both the topology
and weights of its neural networks. NEAT starts with an initial
population of simple networks with no hidden nodes, and gradually
complexifies networks over generations by augmenting topology

1Download at http://people.southwestern.edu/~schrum2/re/mm-neat.php

http://people.southwestern.edu/~schrum2/re/mm-neat.php

Evolving Indirectly Encoded Convolutional Neural Networks to Play Tetris GECCO ’18, July 15–19, 2018, Kyoto, Japan

through mutations that add new links and nodes. The weights of
existing network links can also be modified by mutation.

NEAT also allows for crossover between networks during repro-
duction. In order to account for competing conventions resulting
from different topological lineages, NEAT assigns historical markers
to each link and node within the genome, which allow for efficient
alignment of network components with shared origin.

Other important components of NEAT are the use of speciation
and fitness sharing to influence selection. However, no speciation
is used in this paper because the selection mechanisms of NSGA-
II completely override those of NEAT. Despite the discarding of
speciation, previous work has shown that such a combination of
NEAT and NSGA-II can be successful [25, 26].

NEAT is a direct encoding because every component in the
genome directly corresponds to a component of the network pheno-
type. Therefore, the size of an evolved network is proportional to the
size of its genome. Despite this drawback, NEAT has been successful
in many video game domains [6, 26, 29]. However, NEAT struggles
when scaling up to domains with larger numbers of features, because
a single structural mutation seldom significantly modifies the behav-
ior of an agent, yet many such mutations are needed to optimize the
behavior of a large network. Furthermore, NEAT networks have no
way of leveraging information about the geometric organization of
inputs if such information is available. These shortcomings of NEAT
are addressed by HyperNEAT, described next.

3.3 Full-HyperNEAT
Hypercube-based NEAT [30] is an indirect encoding that extends
NEAT by evolving networks that encode the connectivity patterns of
typically larger substrate networks, which are evaluated in a given
domain. Specifically, HyperNEAT genotypes are Compositional
Pattern-Producing Networks (CPPNs [28]), which differ from stan-
dard NEAT networks in that their activation functions are not limited
to a single type. Instead, CPPN activation functions come from a
set of user-specified functions that produce useful patterns, such
as symmetry and repetition. The specific activation functions used
in this paper are sigmoid, Gaussian, sine, sawtooth wave, triangle
wave, square wave, absolute value, and identity clamped to the range
[0,1]. Because there are multiple activation functions, there is also a
mutation operation that randomly replaces the activation function of
a random node with another one from the set of possibilities.

However, the primary distinction that makes CPPNs and Hyper-
NEAT so powerful is how these CPPNs are used. The CPPNs are
repeatedly queried across a neural substrate, and the outputs of the
CPPN are used to construct a neural network within that substrate,
thus making the substrate network indirectly encoded by the CPPN.
Essentially, the CPPN describes how to encode the link weights as
a function of geometry. These substrates are collections of layered
neurons assigned explicit geometric locations with pre-determined
potential connections between neurons in different layers. Each sub-
strate defines its own coordinate frame, and multiple substrates can
exist in a single network layer. The layout of substrates is defined by
the experimenter and is domain-specific. It specifies how many sub-
strate layers are needed, how many neurons are in each layer, what
their activation functions are, which are input, hidden and output
neurons, and where the neurons are located.

When the CPPN is queried across these substrates, it is determin-
ing whether a potential link will exist, and if so, what its weight will
be. Standard Full-HyperNEAT has the potential to create all links
in a fully connected network. The specific inputs and outputs of a
CPPN depend on how the experimenter defines the geometry of the
substrate network. Several options are explored in the experiments
described in Section 4, but for now, consider a straight-forward
example in which two 2D substrates are being connected.

This CPPN has five inputs: x and y coordinates of both source and
target neurons in different substrate layers, and a constant bias of
1.0. Input coordinates are scaled to the range [−1, 1] with respect to
the size of the current substrate. The CPPN has two outputs: one for
the weights of links, and one for bias values within hidden neurons.

For each source and target neuron queried, the weight output de-
fines the link weight. The bias output defines a constant bias associ-
ated with each neuron in a non-input substrate. Use of a separate bias
output allows the magnitudes of bias values to be decoupled from
link weight values. Bias values are derived by querying the CPPN
with the x and y coordinates of the target neuron, while leaving
the coordinates of the source neuron as (0, 0). A more complicated
example specific to Tetris is shown in Figure 2.

Though the approach described above allows Full-HyperNEAT
to encode large neural networks with geometric domain awareness,
it does not take advantage of modern architectures used in image
processing tasks, such as convolutional neural networks (CNNs).

3.4 CNN-HyperNEAT
The new variant of HyperNEAT in this paper encodes CNNs in vari-
ous ways, one of which is similar to previous work by Verbancsics
and Harguess [38]. CNNs have achieved impressive performance in
image processing tasks [21], including RL tasks [23].

CNN connectivity is sparser than in fully connected networks, but
organized so that each hidden neuron focuses on a localized region
of the preceding layer: its receptive field. Typical image processing
applications split 2D color inputs into separate color channels to
create a 3D input volume, though different input channels are used
in this paper (Section 4.2). Regardless of how the input is shaped,
higher layers are typically spread out across several feature maps.

CNN-HyperNEAT encodes CNNs by treating each feature map
as a separate neural substrate. Every neuron in a convolutional layer
connects to a 3 × 3 receptive field in each substrate of the preceding
layer. The specific region that a neuron connects to corresponds to
its location: the upper-left neuron in a hidden substrate connects to
the upper-left 3 × 3 region in each substrate beneath it. As the target
neuron shifts to an adjacent neuron, the receptive field slides across
the inputs by a number of steps known as the stride, which in this
paper is 1. Therefore, nearby hidden neurons connect to overlapping
input regions. Additionally, because the receptive fields are confined
to the inside of the source substrate (no zero padding is used), each
subsequent layer of the network has substrates that are smaller than
the preceding layer along each edge by two neurons.

Typically, neurons in the same feature map share the same weights,
hence the name feature map: a certain configuration of link weights
corresponds to a particular feature being searched for in the preced-
ing layer. CNN-HyperNEAT does not enforce weight sharing. For a
simple example connecting two substrates, link weights are instead

GECCO ’18, July 15–19, 2018, Kyoto, Japan Jacob Schrum

based on five CPPN inputs: x and y coordinates of the target neuron
in a feature map substrate, a constant bias of 1, and x and y offsets
from the center of the receptive field within the source substrate. The
coordinates of the target neuron are scaled with respect to the size of
the target substrate as before, but the receptive field offsets are scaled
with respect to the size of the receptive field. Instead of treating the
whole input substrate as a coordinate plane, this encoding treats each
receptive field as a separate coordinate plane. A more complicated
example specific to Tetris is shown in Figure 3.

CNN-HyperNEAT encodes a fewer potential links than Full-
HyperNEAT using a different substrate geometry. The effectiveness
of this approach is explored in the experiments below.

4 EXPERIMENTAL SETUP
This section describes how Tetris agents use neural networks to
determine their actions, the low-level inputs used by these networks,
the specific configurations of HyperNEAT substrate layers, and the
general evaluation parameters used in all experiments.

4.1 Afterstate Evaluation
To determine where each piece will go, the agent uses an evolved
network as an afterstate evaluator. Before a piece begins to fall, a
search algorithm considers every possible location the piece can
be placed and remembers the sequence of moves leading to each
placement. Placements that lead to immediate loss are not consid-
ered. Network inputs are taken from states that result from each
valid placement. If a placement fills a row, that row will be cleared
before the state’s feature values are calculated. For each afterstate,
the network produces a single output: a utility score between -1
and 1. The piece placement with the highest utility score across
all possible placements is selected, and the agent carries out the
remembered sequence of actions that lead to the desired placement.
After placement, a new piece appears and the process repeats.

4.2 Low-Level Screen Inputs
All networks are evolved with screen inputs split into two sets. The
first set identifies the locations of blocks, using 1 to represent the
presence of a block and 0 the absence of a block. The second set
identifies the locations of holes, which have a value of −1, while all
other locations have a value of 0. Including the locations of holes
made it easier to distinguish holes from empty non-hole locations.

Since there are two input channels from a 10× 20 board, the num-
ber of inputs is 400. Each channel of 200 inputs occupied a separate
input substrate within the networks encoded by HyperNEAT.

4.3 HyperNEAT Substrates
Several approaches to configuring the HyperNEAT substrates were
used. For both Full-HyperNEAT and CNN-HyperNEAT, three archi-
tectures were evaluated. Links were encoded using either a threshold
(THRESH) approach or LEO [39]. Two distinct coordinate geome-
tries were also used: multi-spatial substrates (MSS [24]), and global
coordinates. Each configuration choice is discussed in detail below.

4.3.1 Architectures. The simplest architecture has a depth and
width of one (D1W1), meaning that there is a single hidden layer
with of a single substrate. There are also direct links from the input

substrates to the output neuron, bypassing the hidden layer. All
neurons use the hyperbolic tangent (tanh) activation function.

For Full-HyperNEAT architectures, the size of each hidden sub-
strate is 10 × 20, corresponding to the input size. Therefore, this first
architecture is identical to the one previously used to apply Hyper-
NEAT to Tetris [16]. For CNN-HyperNEAT, the hidden substrate is
8 × 18 because of how convolutional layers shrink with increasing
layers. Although the hidden substrate is a convolutional layer, all
links to the output neuron, from both the hidden and input substrates,
were fully connected in all CNN-HyperNEAT architectures.

Note that tanh is also used for CNNs, despite the widespread
popularity of rectified linear units (ReLU) for deep CNNs. One of
the primary benefits of ReLU is that it combats the vanishing gradient
problem [20] that arises when using SGD, but this problem is not an
issue for evolutionary search. Nevertheless, preliminary experiments
were conducted using ReLU, but no difference in performance was
observed, so large batches of experiments were conducted with tanh
to fairly compare with previous results using Full-HyperNEAT.

The next architecture has a depth of one, but a width of four
(D1W4), i.e. four adjacent hidden substrates in one layer. In a CNN,
these substrates correspond to feature maps. There are also bypass
connections from the inputs to the output, as in D1W1.

The final architecture has a depth and width of four (D4W4).
Unlike the previous architectures, no direct connections from the
inputs to the output are allowed, because preliminary experiments
indicated that there is a strong local optimum that relies only on
bypass connections. Thus, the bypass option was removed to see if
evolution could take advantage of a deep architecture.

For CNNs, the substrate sizes at each depth are 8 × 18, 6 × 16,
4 × 14, and 2 × 12. Since another subtraction by two would shrink
the width to 0, four is the maximum CNN depth possible without
using zero padding to prevent layers from shrinking. Depths between
one and four were also used in preliminary experiments, but results
indicated that the only meaningful distinction was between one layer
and more than one. Therefore, experiments focus on the distinction
between the deepest and shallowest possible architectures.

4.3.2 Link Encoding. In the original HyperNEAT, a single
CPPN output determines both whether a link exists, and its weight.
Specifically, for each source and target neuron queried, a link is
only expressed if the magnitude of the weight output exceeds 0.2. If
expressed, the link weight equals the output value scaled toward 0 to
eliminate the region between −0.2 and 0.2. This approach is called
the threshold (THRESH) approach in the results below.

An alternative approach is to use an additional link expression
output (LEO [39]). In this paradigm, a link is present if the additional
link expression output is greater than zero, and the weight of said
link is simply the output of the corresponding weight output. The
LEO approach allows network link structure to be decoupled from
link weight magnitude, and thus allows for more modular networks.

4.3.3 Coordinate Geometry. For a given architecture, a means
of specifying all link weights using a CPPN is necessary. The original
HyperNEAT used global coordinates, which is also how Verbancsics
and Harguess used HyperNEAT to encode CNNs [38]. In this ap-
proach, not only is each neuron situated within the coordinate frame
of a substrate, but each substrate is situated within a coordinate
frame containing the entire network.

Evolving Indirectly Encoded Convolutional Neural Networks to Play Tetris GECCO ’18, July 15–19, 2018, Kyoto, Japan

20

10

20

10
20

10

20

10

20

10

...

W

20

10

20

10

20

10

...

W

1
1...

H
Input

Output

Hidden

Evolved Topology

X1 Y1 X2 Y2
BIAS

(X1,Y1)

(X2,Y2)

Z1 S1 Z2 S2

Weig
ht

S1
S2

Z1 Z2

Figure 2: Network Encoding with Full-HyperNEAT Using Global Co-
ordinates. Tetris uses two input substrates (blocks and holes) and a sin-
gle output neuron (utility). The number of hidden layers and substrates
per layer vary by architecture, but each substrate in one layer has the
potential to be fully connected to each substrate of the following layer.
Using global coordinates, the locations of two neurons are provided as
input to the CPPN (bottom) to produce a weight output (bias output
and optional LEO output not shown). This one output neuron encodes
all link weights in the substrate network, which allows for a more com-
pact output layer, but imposes a geometric relationship between links
across different substrates and layers. Full-HyperNEAT can also use
multi-spatial substrates to define its link weights (not shown).

As a result, every neuron is uniquely identified by four coor-
dinates: (z, s,x ,y). The z coordinate specifies the layer within the
network, starting at 0 with the input layer and increasing upward
to 1 at the output layer, with hidden layers evenly spaced between.
The s coordinate specifies the substrate within a particular layer,
and is scaled to [−1, 1] from left to right. Finally, x and y are the
coordinates within a particular substrate. The x coordinate is scaled
to [−1, 1], but the y coordinate is scaled to [0, 1]. The special scaling
for y coordinates was favored because there is no geometric signif-
icance to the vertical center of the Tetris game board. Along the
vertical axis, the most significant location is the floor, so coordinate
values increase upward from there. A similar argument with respect
to network structure applies to how the z coordinates are scaled.

Thus, when using global coordinates, CPPNs require nine inputs:
(z1, s1,x1,y1) and (z2, s2,x2,y2) for source and target neuron loca-
tions, and a constant bias value of 1. When using THRESH encoding,
the CPPN has two outputs: one for the link weight, and another for
the neuron bias. When LEO is used, there is an additional link ex-
pression output. Figure 2 shows how global coordinates are used
to encode a network in Full-HyperNEAT. CNN-HyperNEAT can
also use global coordinates, though some slight adjustments must be
made, which are described at the end of this section below.

An alternative to global coordinates is the multi-spatial substrate
(MSS [24]) approach. This approach removes unnecessary geometric
constraints from the structure of the network. Specifically, global
coordinates impose a geometric relation between substrates based
on location within the network, which is completely independent
from any geometric information in the domain. There is no a priori
reason to expect useful information to exist within the structure of

20

10

20

10
18

8

18

8

18

8

...

W

12

2

12

2

12

2

...

W

1
1...

H
Input

Output

Hidden

I(0
) to

 H
(0,

0)

... I(0
) to

 H
(W

-1,
0)

I(1
) to

 H
(0,

0)

... I(1
) to

 H
(W

-1,
0)

H(0,
0)

to
H(0,

1)

... H(0,
0)

to
H(W

-1,
1)

H(W
-1,

0)
to

H(0,
1)

... H(W
-1,

0)
to

H(W
-1,

1)

... ... H(0,
H-1)

 to
 O

UT

... H(W
-1,

H-1)
 to

 O
UT

I(0
) to

 O
UT

I(1
) to

 O
UT

Evolved Topology

ΔX or
 X1

ΔY or
 Y1 X2 Y2

BIAS

(X2,Y2)

(ΔX,ΔY)

3

3
3

3

Figure 3: Network Encoding with CNN-HyperNEAT Using Multi-
Spatial Substrates. The same input and output substrates are present
as in Figure 2, and different numbers of layers and substrates per
layer are once again supported. However, substrates in each layer are
smaller than in the layer preceding it because of how convolutional lay-
ers shrink. Connections into convolutional layers are depicted by the
receptive field of a single neuron, but thick arrows indicate that lay-
ers are potentially fully connected. With multi-spatial substrates, every
pair of connected substrates has its own CPPN output for defining link
weights (additional bias outputs and optional LEO outputs not shown).
Groups of output neurons are color coded by the pairs of layers they
connect, though there are multiple output neurons per layer pair be-
cause layers can contain multiple substrates. Output labels indicate the
source and target substrates, where I (0) and I (1) are the two input sub-
strates, H (S, Z) is a hidden substrate at depth Z and layer position S ,
and OUT is the output substrate containing one neuron. Because there
are separate outputs for substrates at different global coordinates, the
only necessary CPPN inputs are coordinates within the connected sub-
strates for fully connected layers, and receptive field offsets and target
neuron coordinates for convolutional layers. The output layers of the
CPPNs are now crowded, but each output can encode distinct weight
patterns unrelated to the geometry between layers. CNN-HyperNEAT
can also use global coordinates to define its link weights (not shown).

a human-designed network. Therefore, MSS only uses geometric
information from the domain, and not from the network structure.

Specifically, MSS treats the weights connecting every pair of
substrates as if they exist within unrelated coordinate frames by
evolving CPPNs with separate outputs corresponding to each pair
of connected layers. For every two substrates that are connected,
there exists a weight output and, when using LEO, a link expression
output. Additionally, every non-input substrate also has its own
output responsible for defining the bias values of its neurons. The
number of outputs in a CPPN can thus be very large, but the use of
these separate outputs assures that the weight patterns connecting
different layers need not be bound by any geometric relationship.

However, MSS still leverages geometric information from the
domain, because the neuron coordinates within each substrate are
still used as CPPN inputs. Specifically, five inputs are used: (x1,y1)

GECCO ’18, July 15–19, 2018, Kyoto, Japan Jacob Schrum

for the source neuron in some substrate, (x2,y2) for the target neuron
within a target substrate, and a constant bias of 1. As with global
coordinates, x and y coordinates are scaled to [−1, 1] and [0, 1]
respectively. When deriving link weights between different pairs of
layers, the same inputs may occur, but different CPPN outputs will
be used, thus allowing different weights to be defined. MSS was used
in the original work applying Full-HyperNEAT to Tetris [16]. Figure
3 shows how MSS coordinates are applied in CNN-HyperNEAT.

Whether global or MSS coordinates are used, coordinate geometry
is slightly different with CNN-HyperNEAT. Although CNNs use
convolutional layers, substrates that connect to the output neuron
are fully connected, and use the same substrate geometry described
above. However, when the target substrate is within a convolutional
layer, x1 and y1 inputs are replaced with ∆x and ∆y inputs, which
are offsets from the center of the current receptive field within the
source substrate. Both ∆x and ∆y are scaled to the range [−1, 1].

These various configurations allow for a variety of different ex-
perimental conditions to be compared, but several parameter settings
remained constant throughout all experiments.

4.4 Evaluation Setup
Most experiments consisted of 30 runs per approach lasting 500
generations with a population size of µ = λ = 50, but there were
only 10 runs per approach when using the D4W4 architecture due to
the excessive time required to evaluate larger networks.

Tetris is a noisy domain, meaning that repeated evaluations can
yield wildly different scores due to randomness in the sequence of
tetrominoes in each game. To mitigate the noisiness, fitness scores
were averaged across three trials. The specific objectives used by
NSGA-II for selection were the game score and the number of time
steps the agent survived. The time steps objective is particularly
useful early in evolution when agents cannot clear any rows at all.

When creating the next generation of CPPNs, the chance of creat-
ing new offspring using crossover was 50%. Each link in an offspring
network had a 5% chance of Gaussian perturbation. There was a
40% chance of adding a new link, a 20% chance of adding a new
node, and a 30% chance of a randomly chosen node having its acti-
vation swapped with another random function from the available set
(Section 3.3). These settings led to the results discussed next.

5 RESULTS
Collectively, the results show that CNN-HyperNEAT is superior to
Full-HyperNEAT, MSS is superior to global coordinates, there is no
clear winner between THRESH and LEO, and shallow architectures
are easier to evolve than deep architectures. Figure 4 shows game
scores during evolution with methods grouped by architecture, and
also shows the distribution of scores in the final generation.

Unsurprisingly, a Kruskal-Wallis test indicates that there are sig-
nificant differences between game scores in the final generation
across the 24 methods (H = 302.69,d f = 23,p ≈ 2.2 × 10−16), but
of greater interest is how specific pairs of methods compare. Pair-
wise Mann-Whitney-Wilcoxon tests are used to compare all methods
using Bonferroni error correction to control the familywise error rate.
The p values reported are adjusted to account for the correction.

CNN-HyperNEAT with MSS coordinates and D1W1 or D1W4
produces the best results. There is no significant difference between

these two architectures with THRESH or LEO (p ≈ 1.0), though
median scores with LEO are slightly lower with both architectures.

These four conditions are better than their counterparts using
global coordinates (p < 0.05). Statistically, the shallow CNN ap-
proaches using global coordinates are lumped in with all of the poor
performing fully connected shallow networks (p > 0.05), though
these CNN approaches have outliers that surpass the median scores
of the CNN approaches with MSS coordinates (Figure 4d).

The best scores achieved by fully connected networks with each
architecture are between 200 and 300. Specifically, D1W1 Full MSS
THRESH reproduces previous HyperNEAT results in Tetris [16]
with a median score of 264.33. However, all shallow CNNs surpass
these scores by an order of magnitude.

Deep CNNs do not perform as well. In fact, all D4W4 methods
are statistically tied (p > 0.05). However, the best D4W4 scores
come from CNNs, although Full MSS THRESH does nearly as well
as CNNs with MSS. Other interesting observations with D4W4 are
an outlier from CNN Global THRESH that scores just below 1,400,
and surprisingly bad performance by CNN Global LEO.

The best evolved champions exhibit impressive behavior, being
able to recover multiple times from screens nearly filled with blocks:
https://people.southwestern.edu/~schrum2/re/tetris-cnn.php. A shal-
low CNN playing for nearly an hour eventually loses with a score of
2,901. The best score in the final generation of evolution was 6,640.

As good as these results are, higher scores have been achieved in
the past with high-level features, and can hopefully be achieved in
the future with low-level features. Further analysis of these results
and ideas for future improvement are discussed next.

6 DISCUSSION AND FUTURE WORK
The poor performance of deep architectures is disappointing. Hyper-
NEAT can compactly encode large, deep networks, but has trouble
evolving effective deep networks for Tetris. Part of the challenge for
HyperNEAT could be its reliance on geometric coordinates to define
link weights. In the case of global substrate coordinates, there is no
reason to expect there to be a geometric relationship between differ-
ent convolutional filters. This lack of a relationship is why MSS is
superior to global coordinates, but when defining deep architectures,
the number of additional CPPN outputs required to apply MSS is so
high that it is difficult for evolution to fine tune them all.

An indirect encoding approach similar to HyperNEAT is Hy-
perNetworks [18]. Like a CPPN, a HyperNetwork is queried to
generate the weights of another network, but its inputs are not geo-
metric coordinates. Rather, the input is an embedding vector in a
latent space, that is itself learned during HyperNetwork training via
backpropagation. Importantly, this approach can generate effective
convolutional networks for visual tasks. The authors point out that
while using CPPNs to generate convolutional filters (as done in [13])
results in nice, regular patterns in the weight visualization, effective
convolutional filters are often quite messy and irregular.

However, CNN-HyperNEAT was successful at evolving shal-
low convolutional networks to play Tetris. Though these networks
were not deep, they were still fairly large, consisting of many pa-
rameters: 3,281 for D1W1, and 11,921 for D1W4. When using
Full-HyperNEAT, networks had even more parameters, though these
networks did not fare as well. Any fully connected architecture can

https://people.southwestern.edu/~schrum2/re/tetris-cnn.php

Evolving Indirectly Encoded Convolutional Neural Networks to Play Tetris GECCO ’18, July 15–19, 2018, Kyoto, Japan

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500

G
am

e
S

co
re

Generation

CNN MSS THRESH
CNN MSS LEO

CNN Global THRESH
CNN Global LEO

Full MSS THRESH
Full MSS LEO

Full Global THRESH
Full Global LEO

(a) D1W1 Results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500

G
am

e
S

co
re

Generation

CNN MSS THRESH
CNN MSS LEO

CNN Global THRESH
CNN Global LEO

Full MSS THRESH
Full MSS LEO

Full Global THRESH
Full Global LEO

(b) D1W4 Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500

G
am

e
S

co
re

Generation

CNN MSS THRESH
CNN MSS LEO

CNN Global THRESH
CNN Global LEO

Full MSS THRESH
Full MSS LEO

Full Global THRESH
Full Global LEO

(c) D4W4 Results

 10

 100

 1000

 10000

D1W1 D1W4 D4W4

G
am

e
S

co
re

CNN MSS THRESH
CNN MSS LEO

CNN Global THRESH
CNN Global LEO

Full MSS THRESH
Full MSS LEO

Full Global THRESH
Full Global LEO

(d) Scores in Final Generation
Figure 4: Median Game Scores. Performance of different runs of the same method does not conform to a normal distribution, so median game
scores across 30 runs are shown by generation for the (a) D1W1 and (b) D1W4 architectures. Performance of each method using these architectures
is similar: CNNs using MSS coordinates are much better than other methods. For the (c) D4W4 architecture, median scores across 10 runs are shown.
The best median scores with D4W4 are an order of magnitude lower than those with the shallow architectures. Within this group, CNNs with MSS
coordinates are tied with Full MSS THRESH for best performance. (d) Because different methods attain scores at different orders of magnitude, the
distributions of scores in the final generation are shown on a logarithmic scale using boxplots, which depict minimum, first quartile, median, third
quartile, and maximum scores. Although shallow CNNs using global coordinates have low median scores, the best runs of these approaches exceed
the median scores of CNNs with MSS coordinates. Additionally, among the D4W4 results, the best outlier run of CNN Global THRESH surpasses all
other D4W4 scores. Ultimately, shallow CNNs with MSS coordinates perform the best, but other CNN approaches also produce high scores.

be pruned back to a convolutional architecture, but evolution had
trouble doing so, hence the superiority of CNNs.

The best CNN results used multi-spatial substrates. Previous work
evolving CNNs with HyperNEAT [38] only used global coordinates.
These architectures were deep, but not particularly successful with
evolution alone. In fact, the authors indicate that evolving CNNs
rather than fully connected networks did not result in increased
performance. Their evolved CNNs were only better than fully con-
nected networks when used as feature extractors, which had networks
trained using SGD on top of them. In contrast, the successful CNN
results in Tetris relied on evolution alone.

The use of LEO vs. threshold link encoding had the smallest
effect. Threshold encoding tends to produce scores slightly higher
than LEO’s, but this difference is not statistically significant. LEO
is meant to encourage modularity via intelligent pruning of links,
but CNNs are already comparatively sparse and modular, which is
probably why LEO offers no benefit.

Although CNN-HyperNEAT can encode deep architectures, the
shape of the search space apparently makes it difficult to find ef-
fective weight configurations in this space. However, recent results
from Uber AI [32] demonstrate that a fairly simple direct encod-
ing can evolve effective weight values for large fixed-architecture
CNNs with millions of parameters. Uber AI’s results made use of
massive parallelization at a scale not available for the experiments
in this paper. In fact, the outliers in Tetris could mean that the small
population size of 50 may have stranded certain populations within
effectively inescapable regions of low fitness. In contrast, Uber AI
used population sizes in the thousands, which was only practical due
to the availability of massive parallelization. Some of Uber AI’s ex-
periments [8, 32] also made use of Novelty Search [22], a technique
especially tailored to escaping local optima by using a novelty score
for selection in place of a standard fitness function.

However, population sizes and selection mechanism are likely not
the only reasons that deep networks performed poorly. As mentioned
above, HyperNEAT has a bias toward regularity, which has pros
and cons. However, an extension to HyperNEAT that allows more

GECCO ’18, July 15–19, 2018, Kyoto, Japan Jacob Schrum

irregularity is the Hybridized Indirect and Direct encoding (HybrID
[7]), which begins evolution using HyperNEAT, and then evolves
only the directly-encoded substrate networks further after a fixed
number of generations. There are also improvements to HybrID that
automatically determine the switch point, and combine indirectly-
encoding CPPNs with directly-encoded weight offsets to combine
regularity and irregularity in the encoded substrate networks [19].

Evolution of deep networks can also be combined with backprop-
agation to fine tune evolved networks, but the additional computa-
tional burden is restrictive. However, the use of backpropagation
in Tetris is not straightforward. Deep RL methods have not been
applied to the full game of Tetris yet, but work in SZ-Tetris using
low-level features required special tricks to succeed [10, 12]. Specif-
ically, a special shaping reward function based on holes rather than
the game score was used, new activation functions with special prop-
erties were introduced, and softmax action selection was used to
make TD(λ) effective. In short, previous success in SZ-Tetris was
not a simple matter of applying some well known deep RL method
with minimal modification. Future success in the full game of Tetris
with deep RL could require additional tricks.

Regardless, the results in this paper show that evolution can suc-
cessfully evolve shallow convolutional networks, and also point
toward some potential areas of exploration that could lead to suc-
cessful deep CNNs in the future. CNN-HyperNEAT could succeed
in other video games and visual RL tasks as well.

7 CONCLUSION
CNN-HyperNEAT can evolve convolutional neural networks using
an indirect encoding. This approach successfully evolved afterstate
evaluators for the game of Tetris with shallow architectures using
multi-spatial substrates, rather than global substrate coordinates. The
CNN-HyperNEAT approach can be applied to other domains that use
visuospatial inputs, such as video games. Further development, via
combination with Novelty Search, HybrID, and/or backpropagation
could scale CNN-HyperNEAT up to deeper networks.

REFERENCES
[1] D. Bertsekas and S. Ioffe. 1996. Temporal Differences-Based Policy Iteration and

Applications in Neuro-Dynamic Programming. Technical Report LIDS-P-2349.
MIT.

[2] Niko Böhm, Gabriella Kókai, and Stefan Mandl. 2004. Evolving a Heuristic
Function for the Game of Tetris. In Lernen - Wissensentdeckung - Adaptivität.

[3] A. Boumaza. 2009. On the Evolution of Artificial Tetris Players. In Computational
Intelligence and Games. 387–393.

[4] R. Breukelaar, E. D. Demaine, S. Hohenberger, H. J. Hoogeboom, W. A. Kosters,
and D. Liben-Nowell. 2004. Tetris is hard, even to approximate. International
Journal of Computational Geometry and Applications 14, 1–2 (2004), 41–68.

[5] Heidi Burgiel. 1997. How to Lose at Tetris. Mathematical Gazette 81, 491 (1997).
[6] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2009. Evolving

Competitive Car Controllers for Racing Games with Neuroevolution. In Genetic
and Evolutionary Computation Conference. 1179–1186.

[7] Jeff Clune, Benjamin E. Beckmann, Robert T. Pennock, and Charles Ofria. 2009.
HybrID: A Hybridization of Indirect and Direct Encodings for Evolutionary
Computation. In European Conference on Artificial Life. 134–141.

[8] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Ken-
neth O. Stanley, and Jeff Clune. 2017. Improving Exploration in Evolution
Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking
Agents. ArXiv e-prints (2017). arXiv:1712.06560

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6 (2002), 182–197.

[10] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2016. From free energy to expected
energy: Improving energy-based value function approximation in reinforcement
learning. Neural Networks 84 (2016), 17–27.

[11] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2017. Online Meta-learning by
Parallel Algorithm Competition. ArXiv e-prints (2017). arXiv:1702.07490

[12] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2017. Sigmoid-Weighted Linear
Units for Neural Network Function Approximation in Reinforcement Learning.
ArXiv e-prints (2017). arXiv:1702.03118

[13] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg, M.
Lanctot, and D. Wierstra. 2016. Convolution by Evolution: Differentiable Pattern
Producing Networks. In Genetic and Evolutionary Computation Conference.

[14] Jose M. Font, Daniel Manrique, Sergio Larrodera, and Pablo Ramos Criado.
2017. Towards a Hybrid Neural and Evolutionary Heuristic Approach for Playing
Tile-matching Puzzle Games. In Computational Intelligence and Games.

[15] Victor Gabillon, Mohammad Ghavamzadeh, and Bruno Scherrer. 2013. Approx-
imate Dynamic Programming Finally Performs Well in the Game of Tetris. In
Neural Information Processing Systems. 1754–1762.

[16] Lauren E. Gillespie, Gabriela R. Gonzalez, and Jacob Schrum. 2017. Comparing
Direct and Indirect Encodings Using Both Raw and Hand-Designed Features in
Tetris. In Genetic and Evolutionary Computation Conference.

[17] Alexander Groß, Jan Friedland, and Friedhelm Schwenker. 2008. Learning to Play
Tetris Applying Reinforcement Learning Methods. In European Symposium on
Artificial Neural Networks. 131–136.

[18] David Ha, Andrew Dai, and Quoc V. Le. 2017. HyperNetworks. In International
Conference on Learning Representations.

[19] Lucas Helms and Jeff Clune. 2017. Improving HybrID: How to best combine
indirect and direct encoding in evolutionary algorithms. PLOS ONE 12, 3 (2017).

[20] Sepp Hochreiter. 1991. Untersuchungen zu dynamischen neuronalen Netzen. Ph.D.
Dissertation. TU Munich.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Neural Information Pro-
cessing Systems.

[22] Joel Lehman and Kenneth O. Stanley. 2008. Exploiting Open-Endedness to Solve
Problems Through the Search for Novelty. In Artificial Life. MIT Press.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. In NIPS Deep Learning Workshop.

[24] Justin K. Pugh and Kenneth O. Stanley. 2013. Evolving Multimodal Controllers
with HyperNEAT. In Genetic and Evolutionary Computation Conference.

[25] Jacob Schrum and Risto Miikkulainen. 2012. Evolving Multimodal Networks for
Multitask Games. TCIAIG 4, 2 (2012), 94–111.

[26] Jacob Schrum and Risto Miikkulainen. 2016. Discovering Multimodal Behavior in
Ms. Pac-Man through Evolution of Modular Neural Networks. IEEE Transactions
on Computational Intelligence and AI in Games 8, 1 (2016), 67–81.

[27] Özgür Simsek, Simon Algorta, and Amit Kothiyal. 2016. Why Most Decisions
Are Easy in Tetris - And Perhaps in Other Sequential Decision Problems, As Well.
In International Conference on Machine Learning. 1757–1765.

[28] Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines 8, 2
(2007), 131–162.

[29] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. 2005. Evolving
Neural Network Agents in the NERO Video Game. In Computational Intelligence
and Games.

[30] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A Hypercube-
based Encoding for Evolving Large-scale Neural Networks. Artificial Life (2009).

[31] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evolutionary Computation 10 (2002), 99–127.

[32] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Ken-
neth O. Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms
Are a Competitive Alternative for Training Deep Neural Networks for Reinforce-
ment Learning. ArXiv e-prints (2017). arXiv:1712.06567

[33] Istvan Szita and András Lörincz. 2006. Learning Tetris Using the Noisy Cross-
Entropy Method. Neural Computation 18, 12 (2006), 2936–2941.

[34] István Szita and Csaba Szepesvári. 2010. SZ-Tetris as a benchmark for studying
key problems of reinforcement learning. In ICML workshop on ML and games.

[35] Brian Tanner and Adam White. 2009. RL-Glue : Language-Independent Software
for Reinforcement-Learning Experiments. Journal of Machine Learning Research
10 (2009), 2133–2136.

[36] Christophe Thiery and Bruno Scherrer. 2009. Building Controllers for Tetris.
International Computer Games Association Journal 32 (2009), 3–11.

[37] Christophe Thiery and Bruno Scherrer. 2009. Improvements on Learning Tetris
with Cross Entropy. International Computer Games Association Journal (2009).

[38] P. Verbancsics and J. Harguess. 2015. Image Classification Using Generative
Neuro Evolution for Deep Learning. In Winter Conference on Applications of
Computer Vision. 488–493. https://doi.org/10.1109/WACV.2015.71

[39] Phillip Verbancsics and Kenneth O. Stanley. 2011. Constraining Connectivity to
Encourage Modularity in HyperNEAT. In Genetic and Evolutionary Computation
Conference.

[40] Shimon Whiteson, Brian Tanner, and Adam White. 2010. The Reinforcement
Learning Competitions. AI Magazine 31, 2 (2010), 81–94.

http://arxiv.org/abs/1712.06560
http://arxiv.org/abs/1702.07490
http://arxiv.org/abs/1702.03118
http://arxiv.org/abs/1712.06567
https://doi.org/10.1109/WACV.2015.71

	Abstract
	1 Introduction
	2 Tetris
	2.1 Gameplay
	2.2 Previous Research

	3 Evolutionary Algorithms
	3.1 NSGA-II
	3.2 NEAT
	3.3 Full-HyperNEAT
	3.4 CNN-HyperNEAT

	4 Experimental Setup
	4.1 Afterstate Evaluation
	4.2 Low-Level Screen Inputs
	4.3 HyperNEAT Substrates
	4.4 Evaluation Setup

	5 Results
	6 Discussion and Future Work
	7 Conclusion
	References

